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Ritz variational principle

• consider a Hamiltonian H and arbitrary 
normalized state 

• The ground state energy has a upperbound

⟨ψ |ψ⟩ = 1

E0 ≤ ⟨ψ |H |ψ⟩



Proof
• Expand the wavefunction with eigenstates

• Calculate the expectation value of E

|ψ⟩ = ∑
m

Cm |m⟩ ∑
m

|Cm |2 = 1

⟨ψ |H |ψ⟩ = ∑
nm

C*n Cm⟨n |H |m⟩ = ∑
nm

C*n CmEm⟨n |m⟩

= ∑
m

|Cm |2 Em

≥ E0 ∑
m

|Cm |2 = E0



SHO energy
• Consider SHO

• Trial wavefunction: Gaussian function

• normalization constant

H =
p2

2m
+

1
2

mω2x2

ψ(x) = Ae−bx2

∫
∞

−∞
|ψ(x) |2 dx = A∫

∞

−∞
e−2bx2dx = 1 A = ( 2b

π )
1/4



SHO energy
• Calculate kinetic energy

• potential energy

⟨T⟩ =
ℏ2

2m ∫ ψ*(x)
d2

dx2
ψ(x)dx

ψ(x) = Ae−bx2

=
ℏ2

2m
A2(2b)2 ∫ x2e−2bx2dx

=
ℏ2

2m
(2b)2A2 ∫

1
4b

e−2bx2dx =
ℏ2b
2m

⟨V⟩ =
mω2

2 ∫ ψ*(x)x2ψ(x)dx =
mω2

2
A2 ∫ x2e−2bx2dx

=
mω2

2
A2 1

4b ∫ e−2bx2dx =
mω2

8b



SHO energy
• Expectation energy

• Minimize energy in respect to b

• Minimum energy 

⟨H⟩ = ⟨T⟩ + ⟨V⟩ =
ℏ2b
2m

+
mω2

8b

d⟨H⟩
db

=
ℏ2

2m
−

mω2

8b2
= 0 b =

mω
2ℏ

It is an exact result!

⟨H⟩min = ( ℏ2

2m ) ( mω
2ℏ ) + ( mω2

8 ) ( 2ℏ
mω ) =

1
2

ℏω



Ground state of He
• The 2-particle Hamiltonian

• 2-particle trial wavefunction

• single particle wavefunction(effective 
nuclear charge)

H =
p2

1

2m
+

p2
2

2m
−

Ze2

4πε0r1
−

Ze2

4πε0r2
+

e2

4πε0r12

ψ (r1, r2) = ψ100 (r1) ψ100 (r2)

Hψ100 = [ p2

2m
−

Z*e2

4πε0r ] ψ100 = Eψ100

E = − Z*2 ( 1
2

mc2α2) = − 13.6Z*2eV

r1 r2

-e -er12

Ze



Electron repulsion energy
• Trial wavefunction

• Repulsion energy

ψ100 =
Z3

πa3
0

e−Zr/a0 ψ(r1, r2) =
Z3

πa3
0

e−Z r1 + r2
a0





Estimated energy for Z*=2

• If Z*=2, Vee=34 eV

• Z*=2, 2E= 8 x (-13.6 eV)= -109 eV, total 
energy=2E+Vee =-109 eV+ 34 eV= -75 eV

• Exact He energy = -78.975 eV

⟨Vee⟩ =
e2

4πε0 ( Z3

πa3
0 )

2

× 20π2 ( a0

2Z )
5

=
e2

4πε0

5
8

Z
a0

→
e2

4πε0

5
8

Z*
a0

=
5
4

Z* ( 1
2

mc2α2)
• Replace Z by Z*



Z* <> 2
• Rewrite the Hamiltonian

• For the first 4- terms the energy is

• For the last term is

H =
p2

1

2m
+

p2
2

2m
−

Z*e2

4πε0r1
−

Z*e2

4πε0r2
−

ΔZe2

4πε0r1
−

ΔZe2

4πε0r2
+

e2

4πε0 |r12 |

⟨ p2
1

2m
+

p2
2

2m
−

Z*e2

4πεr1
−

Z*e2

4πεr2 ⟩ = − 2Z*2 ( 1
2

mc2α2)

⟨Vee⟩ =
5
4

Z* ( 1
2

mc2α2)

ΔZ = Z − Z*



estimated energy for
• Additional potential term

• total energy 

Z* ≠ 2

⟨−
ΔZe2

4πε0r1
−

ΔZe2

4πε0r2 ⟩ = − 2
ΔZe2

4πε0 ⟨ 1
r ⟩ = − 2

ΔZe2

4πε0

Z*
a0

= 4ΔZZ* ( 1
2

mc2α2)

⟨H⟩ = [−2Z*2 − 4(Z − Z*)Z* +
5
4

Z*] ( 1
2

mc2α2)
= (2Z*2 − 4ZZ* +

5
4

Z*) ( 1
2

mc2α2)



minimize energy
• minimize E

• minimum energy

• Exact He energy = -78.975 eV

d⟨H⟩
dZ*

= (4Z* − 4Z +
5
4 ) ( 1

2
mc2α2) = 0

Z* = Z −
5
16

⟨H⟩min = − 2 (Z −
5
16 )

2

( 1
2

mc2α2) = − 77.38eV



H2+ ion
• Hamiltonian

• Trial wavefunction: Linear combination of 
atomic orbitals(LCAO)

• For simplicity, we only consider even 
wavefunction.(bonding mode)  

R

r1 r2H =
p2

2m
−

e2

4πε0r1
−

e2

4πε0r2
+

e2

4πε0R

-e

e e

Ψ± = A [ψ0(r1) ± ψ0(r2)]
ψ0(r1) =

1

πa3
0

e−r/a0

R is bond length



overlap integral
• normalization constant

• Overlap integral

1 = ⟨ψ |ψ⟩ = A2 [⟨ψ0(r1) |ψ0(r1)⟩ + ⟨ψ0(r2) |ψ0(r2)⟩ + 2⟨ψ0(r1) |ψ0(r2)⟩]
= 2A2 [1 + ⟨ψ0(r1) |ψ0(r2)⟩]

A2 =
1
2

1
1 + ⟨ψ0(r1) |ψ0(r2)⟩





Expectation energy

• The expectation value of energy

• H is invariant if 1    2

⟨H⟩ = A2 [⟨ψ0(r1) |H |ψ0(r1)⟩ + ⟨ψ0(r2) |H |ψ0(r2)⟩ + 2⟨ψ0(r1) |H |ψ0(r2)⟩]
= 2A2 [⟨ψ0(r1) |H |ψ0(r1)⟩ + ⟨ψ0(r1) |H |ψ0(r2)⟩]

H =
p2

2m
−

e2

4πε0r1
−

e2

4πε0r2
+

e2

4πε0R

⟨ψ0(r1) |H |ψ0(r1)⟩ = ⟨ψ0(r2) |H |ψ0(r2)⟩ why?



Expectation energy

• The matrix elements 

⟨ψ0(r1) |H |ψ0(r1)⟩ = ⟨ψ0(r1)
p2

2m
−

e2

4πε0r1
−

e2

4πε0r2
+

e2

4πε0R
ψ0(r1)⟩

= E1 +
e2

4πε0R
−

e2

4πε0 ⟨ψ0(r1)
1
r2

ψ0(r1)⟩
⟨ψ0(r1) |H |ψ0(r2)⟩ = ⟨ψ0(r1)

p2

2m
−

e2

4πε0r1
−

e2

4πε0r2
+

e2

4πε0R
ψ0(r2)⟩

= (E1 +
e2

4πε0R ) ⟨ψ0(r1) |ψ0(r2)⟩ −
e2

4πε0 ⟨ψ0(r1)
1
r1

ψ0(r2)⟩



Expectation energy
⟨H⟩ = 2A2 [⟨ψ0 |H |ψ0⟩ + ⟨ψ0(r1) |H |ψ0(r2)⟩]

= 2A2 (E1 +
e2

4πε0R ) (1 + ⟨ψ0(r1) |ψ0(r2)⟩)

−2A2 e2

4πε0 ⟨ψ0(r1)
1
r2

ψ0(r1)⟩ + ⟨ψ0(r1)
1
r1

ψ0(r2)⟩
= E1 +

e2

4πε0R
−

e2

4πε0a0 ( D + X
1 + I ) A2 =

1
2

1
1 + ⟨ψ0(r1) |ψ0(r2)⟩

E1 = −
1
2

e2

4πε0a0

= E1 (1 − 2
a0

R
+ 2

D + X
1 + I )



Direct integral

• Direct integral

• Exchange integral

D = a0 ⟨ψ0(r1)
1
r2

ψ0(r1)⟩ =
a0

R
− (1 +

a0

R ) e−2R/a0 =
1
x [1 − (1 + x)e−2x]

X = a0 ⟨ψ0(r1)
1
r1

ψ0(r2)⟩ = (1 +
R
a0 ) e−R/a0 = (1 + x)e−x

x =
R
a0



optimization
• Express the <E> with x

• To minimize <E> with respect to x

⟨H⟩ = E1 (1 − 2
a0

R
+ 2

D + X
1 + I )

= E1 1 − 2
1
x

+ 2
1
x [1 − (1 + x)e−2x] + (1 + x)e−x

1 + (1 + x + x2

3 ) e−x

= E1 1 − 2
1
x

(1 + x) e−2x + (1 − 2
3 x2) e−x

1 + (1 + x + x2

3 ) e−x
= FE1



H2 bonding 
• optimum distance R~2.4 a0 (~0.13 nm)

• optimum energy change ~ -1.76 eV

• experimental R~0.106 nm

• optimum energy change ~ -2.8 eV

F = 1 − 2
1
x

(1 + x) e−2x + (1 − 2
3 x2) e−x

1 + (1 + x + x2

3 ) e−x
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We report the first electronic structure calculation performed on a quantum computer without
exponentially costly precompilation. We use a programmable array of superconducting qubits to compute
the energy surface of molecular hydrogen using two distinct quantum algorithms. First, we experimentally
execute the unitary coupled cluster method using the variational quantum eigensolver. Our efficient
implementation predicts the correct dissociation energy to within chemical accuracy of the numerically
exact result. Second, we experimentally demonstrate the canonical quantum algorithm for chemistry, which
consists of Trotterization and quantum phase estimation. We compare the experimental performance of
these approaches to show clear evidence that the variational quantum eigensolver is robust to certain errors.
This error tolerance inspires hope that variational quantum simulations of classically intractable molecules
may be viable in the near future.

DOI: 10.1103/PhysRevX.6.031007 Subject Areas: Condensed Matter Physics,
Quantum Information

I. INTRODUCTION

Universal and efficient simulation of physical systems
[1] is among the most compelling applications of quantum
computing. In particular, quantum simulation of molecular
energies [2], which enables numerically exact prediction of
chemical reaction rates, promises significant advances in
our understanding of chemistry and could enable in silico
design of new catalysts, pharmaceuticals, and materials.
As scalable quantum hardware becomes increasingly viable
[3–7], chemistry simulation has attracted significant atten-
tion [8–28], since classically intractable molecules require a
relatively modest number of qubits and because solutions

have commercial value associated with their chemical
applications [29].
The fundamental challenge in building a quantum

computer is realizing high-fidelity operations in a scalable
architecture [30]. Superconducting qubits have made rapid
progress in recent years [3–6] and can be fabricated in
microchip foundries and manufactured at scale [31]. Recent
experiments have shown logic gate fidelities at the thresh-
old required for quantum error correction [3] and dynami-
cal suppression of bit-flip errors [4]. Here, we use the
device reported in Refs. [4,7,32] to implement and compare
two quantum algorithms for chemistry. We have previously
characterized our hardware using randomized benchmark-
ing [4] but related metrics (e.g., fidelities) only loosely
bound how well our devices can simulate molecular
energies. Thus, studying the performance of hardware on
small instances of real problems is an important way to
measure progress towards viable quantum computing.
Our first experiment demonstrates the recently proposed

variational quantum eigensolver (VQE), introduced in
Ref. [19]. Our VQE experiment achieves chemical accu-
racy and is the first scalable quantum simulation of
molecular energies performed on quantum hardware, in
the sense that our algorithm is efficient and does not benefit
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Variational eigensolver

• We want to optimize the energy

⟨ψ(θ) |H |ψ(θ)⟩

• For computation, the hamiltonian is scalable 
using “local hamiltonians”

H = ∑
γ

hγHγ

Hγ = {1,Xi, Yi, Zi} and their combinations



2nd quantization method

H = ∑
i

p2
i

2m
−

Zje2

4πε0 |ri − Rj |
+

ZiZje2

4πε0 |Ri − Rj |
+

e2

4πε0 |ri − rj |

• Original version of H

repulsive force
r1

r2

R1
R2



2nd quantization method

H = ∑
pq

hpqa†
paq + ∑

pqrs

hpqrsa†
pa†

qaras

• 2nd quantization formulation

hpq = ∫ drϕ*p (r)
p2

2m
− ∑

j

Zje2

4πε0 |r − Rj |
ϕq(r)

hpqrs =
e2

4πε0 ∫ dr1dr2ϕ*p (r1)ϕ*q (r2)
1

|r1 − r2 |
ϕr(r1)ϕs(r2)

ap are fermionic operators



Local hamiltonians
• For H2 molecules (4-qubit H for p, q, r and s)

• q1 and q3 do not flip. Can be simplified to 
2-qubit H



Variational eigensolver
• Input state is parametrized by a shallow 

quantum circuit
|ψ(θ)⟩ = U(θ) |ϕ⟩

is a product state|ϕ⟩

θ is a list of parameters

• In practice, U can be expressed as

U(θ) = U1(θ1)U2(θ2)⋯Un(θn)





one measures the phase Ent and collapses the system
register to the state jni with probability janj2.
Our PEA implementation is based on a modification of

Kitaev’s iterative phase estimation algorithm [8,35]. The
circuit we use is shown in Fig. 4 and detailed descriptions
of the subroutines we use to control UTrotð2kt0Þ on an
ancilla are shown in Appendix C. The rotation ZΦðkÞ in
Fig. 4 feeds back classical information from the prior k − 1
measurements using phase kickback as

ΦðkÞ ¼ π
Xk−1

l¼0

jl
2l−kþ1

: ð7Þ

With iterative phase estimation, one measures the phase
accumulated on the system one bit at a time. Even when a0
is very small, one can use iterative phase estimation to
measure eigenvalues if the system register remains coherent
throughout the entire phase determination. Since the
Hartree-Fock state has strong overlap with the ground state
of molecular hydrogen (i.e., jh0jϕij2 > 0.5), we are able to
measure each bit independently with a majority-voting
scheme, reducing coherence requirements. For b bits,
the ground-state energy is digitally computed as a binary
expansion of the measurement outcomes,

Eb
0 ¼ −

π
t0

Xb−1

k¼0

jk
2kþ1

: ð8Þ

Experimentally computed energies are plotted alongside
VQE results in Fig. 3(a). Because energies are measured

digitally in iterative phase estimation, the experimentally
determined PEA energies in Fig. 3(a) agree exactly with
theoretical simulations of Fig. 4, which differ from the exact
energies due to the approximation of Eq. (5). The primary
difficulty of the PEA experiment is that the controlled
application of UTrotð2kt0Þ requires complex quantum
circuitry and long coherent evolutions. Accordingly, we
approximate the propagator in Eq. (5) using a single
Trotter step (ρ ¼ 1), which is not sufficient for chemical
accuracy. Our PEA experiment shows an error in the
dissociation energy of ð1% 1Þ × 10−2 hartree.
In addition to taking only one Trotter step, we perform

classical simulations of the error in Eq. (5) under different
orderings of the Hγ in order to find the optimal Trotter
sequences at each value of R. The Trotter sequences we use
in our experiment as well as parameters such as t0 are
reported in Appendix C. Since this optimization is intrac-
table for larger molecules, our PEA protocol benefits from
inefficient classical preprocessing (unlike our VQE imple-
mentation). Nevertheless, this is the first time the canonical
quantum algorithm for chemistry has been executed in its
entirety and, as such, represents a significant step towards
scalable implementations.

IV. EXPERIMENTAL METHODS

Both algorithms are implemented with a superconduct-
ing quantum system based on the Xmon [48], a variant of
the planar transmon qubit [49], in a dilution refrigerator
with a base temperature of 20 mK. Each qubit consists
of a superconducting quantum interference device

(a) (b)

FIG. 3. Computed H2 energy curve and errors. (a) Energy surface of molecular hydrogen as determined by both VQE and PEA. VQE
approach shows dissociation energy error of ð8% 5Þ × 10−4 hartree (error bars on VQE data are smaller than markers). PEA approach
shows dissociation energy error of ð1% 1Þ × 10−2 hartree. (b) Errors in VQE energy surface. Red dots show error in the experimentally
determined energies. Green diamonds show the error in the energies that would have been obtained experimentally by running the circuit
at the theoretically optimal θ instead of the experimentally optimal θ. The discrepancy between blue and red dots provides experimental
evidence for the robustness of VQE, which could not have been anticipated via numerical simulations. The gray band encloses the
chemically accurate region relative to the experimental energy of the atomized molecule. The dissociation energy is relative to the
equilibrium geometry, which falls within this envelope.
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