Approximation method

Time independent

- Assume that the Hamiltonian is a sum of two terms,

$$
H=H_{0}+\lambda H_{1}
$$

- Let $\{|\alpha\rangle\}$ be a complete set of eigenstates of the unperturbed Hamiltonian H_{0} with energy eigenvalues E_{α}

$$
H_{0}|\alpha\rangle=E_{\alpha}|\alpha\rangle
$$

- The eigenstates $\{l a>\}$ and eigenvalues $\left\{E_{a}\right\}$ of the complete Hamiltonian H

$$
H|a\rangle=E_{a}|a\rangle
$$

Non-degenerate case

- unperturbed results

$$
|a\rangle \simeq|\alpha\rangle \quad E_{a} \simeq E_{\alpha}
$$

- perturbed states

$$
\begin{gathered}
|a\rangle=c_{\alpha}|\alpha\rangle+\sum_{\beta \neq \alpha} d_{\beta}|\beta\rangle \\
\left|c_{\alpha}\right|^{2}+\sum_{\beta \neq \alpha}\left|d_{\beta}\right|^{2}=1
\end{gathered}
$$

- Perturbation theory evaluates the eigenvalues E_{a}, and the coefficients c_{α} and d_{β}, as power series in λ
- To find $E_{a} \quad\langle\alpha|\left(H-E_{a}\right)|a\rangle=0$

$$
\begin{aligned}
\langle\alpha|\left(H-E_{a}\right)|a\rangle & =\langle\alpha|\left(H_{0}+\lambda H_{1}-E_{a}\right)|a\rangle \\
& =c_{\alpha}\langle\alpha|\left(H_{0}-E_{a}+\lambda H_{1}\right)|\alpha\rangle+\sum_{\beta \alpha \alpha} d_{\beta}\langle\alpha|\left(H_{0}-E_{a}+\lambda H_{1}\right)|\beta\rangle \\
& =\lambda c_{\alpha}\langle\alpha| H_{1}|\alpha\rangle+c_{\alpha}\left(E_{\alpha}-E_{a}\right)+\sum_{\beta \neq \alpha} \lambda d_{\beta}\langle\alpha| H_{1}|\beta\rangle \\
& =0
\end{aligned}
$$

- d is on the order of λ, and c is on the order of $I+O\left(\lambda^{2}\right)$

$$
\begin{aligned}
E_{a} & =E_{\alpha}+\lambda\langle\alpha| H_{1}|\alpha\rangle+\frac{\lambda}{c_{\alpha}} \sum_{\beta \neq \alpha} d_{\beta}\langle\alpha| H_{1}|\beta\rangle \\
& =E_{\alpha}+\lambda\langle\alpha| H_{1}|\alpha\rangle+O\left(\lambda^{2}\right)
\end{aligned}
$$

- To find d

$$
\langle\gamma|\left(H-E_{a}\right)|a\rangle=0 \quad \gamma \neq \alpha
$$

$$
\begin{aligned}
\langle\gamma|\left(H-E_{a}\right)|a\rangle & =\langle\gamma|\left(H_{0}+\lambda H_{1}-E_{a}\right)|a\rangle \\
& =c_{\alpha}\langle\gamma|\left(H_{0}-E_{a}+\lambda H_{1}\right)|\alpha\rangle+\sum_{\beta=a} d_{\beta}\langle\gamma|\left(H_{0}-E_{a}+\lambda H_{1}\right)|\beta\rangle \\
& =\lambda c_{\alpha}\langle\gamma| H_{1}|\alpha\rangle+d_{\gamma}\left(E_{\gamma}-E_{a}\right)+\sum_{\beta=\alpha} \lambda d_{\beta}\langle\gamma| H_{1}|\beta\rangle \\
& =0
\end{aligned}
$$

- d is on the order of λ, and c is on the order of $I+O\left(\lambda^{2}\right)$

$$
d_{\gamma}=c_{\alpha} \lambda \frac{\langle\gamma| H_{1}|\alpha\rangle}{E_{a}-E_{\gamma}}+O\left(\lambda^{2}\right)=\lambda \frac{\langle\gamma| H_{1}|\alpha\rangle}{E_{a}-E_{\gamma}}+O\left(\lambda^{2}\right)
$$

- To leading order E_{a} can be replaced by the unperturbed eigenvalue E_{α}. Hence

$$
|a\rangle=|\alpha\rangle+\sum_{\beta \neq \alpha}|\beta\rangle \frac{\lambda\langle\beta| H_{1}|\alpha\rangle}{E_{\alpha}-E_{\beta}}+O\left(\lambda^{2}\right)
$$

- This formula requires that for all β

$$
\left|\frac{\lambda\langle\beta| H_{1}|\alpha\rangle}{E_{\alpha}-E_{\beta}}\right| \ll 1
$$

- If the off-diagonal matrix elements of H_{l} do not grow as the energy difference $\left|\mathrm{E}_{\alpha}-\mathrm{E}_{\beta}\right|$ increases, the more "distant" a state is from the state of interest the smaller its influence will be.
- Consider the second order correction in E_{a}

$$
\begin{aligned}
E_{\alpha} & =E_{\alpha}+\lambda\langle\alpha| H_{1}|\alpha\rangle+\frac{\lambda}{c_{\alpha}} \sum_{\beta=\alpha} d_{\beta}\langle\alpha| H_{1}|\beta\rangle \\
& =E_{\alpha}+\lambda\langle\alpha| H_{1}|\alpha\rangle+\lambda^{2} \sum_{\beta=\alpha} \frac{\left.\left|\langle\alpha| H_{1}\right| \beta\right\rangle\left.\right|^{2}}{E_{\alpha}-E_{\beta}}+O\left(\lambda^{3}\right)
\end{aligned}
$$

- The leading contribution to the energy shift is the expectation value of the perturbation in the unperturbed state. The second-order term involves the other unperturbed states, and in many situations this is the leading correction because the Ist order value vanishes by symmetry.

The validity of the

 perturbation expansion- The anharmonic oscillator

Degenerate-State case

- the perturbation produces large effects on unperturbed states that have nearby neighbors
- Consider the spectrum of H_{0}, which contains a degenerate or nearly degenerate subspace D

$\mathfrak{D} \equiv \alpha$
- Within D, no constraint is put on the magnitude of matrix elements. The problem comes from

$$
\left.\left|\lambda\langle\beta| H_{1}\right| \alpha\right\rangle|\ll| E_{\alpha}-E_{\beta} \mid
$$

- In view of these characteristics of the unperturbed spectrum, the unperturbed state is amended to

$$
|a\rangle=\sum_{\alpha} c_{\alpha}|\alpha\rangle+\sum_{\mu} d_{\mu}|\mu\rangle
$$

- Now c are on the order $O(I)$ and d are on the order $O(\lambda)$
- Starting from the equation $\left(H-E_{a}\right)|a\rangle=0$
- Project it to a state $\mid \beta>$ in $\mathrm{D} \quad|\beta\rangle \neq|\alpha\rangle$

$$
\begin{aligned}
\langle\beta|\left(H-E_{a}\right)|a\rangle & =\langle\beta|\left(H_{0}+\lambda H_{1}-E_{a}\right)|a\rangle \\
& =\sum_{\alpha} c_{\alpha}\langle\beta|\left(H_{0}-E_{a}+\lambda H_{1}\right)|\alpha\rangle+\sum_{\mu} d_{\mu}\langle\beta|\left(H_{0}-E_{a}+\lambda H_{1}\right)|\mu\rangle \\
& =c_{\beta}\left(E_{\beta}-E_{a}\right)+\lambda \sum_{\alpha} c_{\alpha}\langle\beta| H_{1}|\alpha\rangle+\lambda \sum_{\mu} d_{\mu}\langle\beta| H_{1}|\mu\rangle \\
& =0
\end{aligned}
$$

- Project it to a state |V> outside D

$$
\begin{aligned}
\langle v|\left(H-E_{a}\right)|a\rangle & =\langle v|\left(H_{0}+\lambda H_{1}-E_{a}\right)|a\rangle \\
& =\sum_{\alpha} c_{\alpha}\langle v|\left(H_{0}-E_{a}+\lambda H_{1}\right)|\alpha\rangle+\sum_{\mu} d_{\mu}\langle v|\left(H_{0}-E_{a}+\lambda H_{1}\right)|\mu\rangle \\
& =\lambda \sum_{\alpha} c_{\alpha}\langle v| H_{1}|\alpha\rangle+d_{v}\left(E_{v}-E_{a}\right)+\lambda \sum_{\mu} d_{\mu}\langle\beta| H_{1}|\mu\rangle \\
& =0
\end{aligned}
$$

- Consider equation for $\mid \mathbf{V}>$ first

$$
\lambda \sum_{\alpha} c_{\alpha}\langle v| H_{1}|\alpha\rangle+d_{v}\left(E_{v}-E_{a}\right)+\lambda \sum_{\mu} d_{\mu}\langle\beta| H_{1}|\mu\rangle=0
$$

- In D, energy are similar and can be chosen as an average energy E_{D}

$$
\begin{aligned}
d_{v} & =\lambda \sum_{\alpha} c_{\alpha} \frac{\langle v| H_{1}|\alpha\rangle}{E_{a}-E_{v}}+O\left(\lambda^{2}\right) \\
& =\frac{\lambda}{E_{D}-E_{v}} \sum_{\alpha} c_{\alpha}\langle v| H_{1}|\alpha\rangle+O\left(\lambda^{2}\right)
\end{aligned}
$$

- Put into the equation for $\mid \beta>$

$$
\begin{gathered}
c_{\beta}\left(E_{\beta}-E_{a}\right)+\lambda \sum_{\alpha} c_{\alpha}\langle\beta| H_{1}|\alpha\rangle+\lambda \sum_{\mu} d_{\mu}\langle\beta| H_{1}|\mu\rangle=0 \\
c_{\beta}\left(E_{\beta}-E_{a}\right)+\sum_{\alpha} c_{\alpha}\left[\lambda\langle\beta| H_{1}|\alpha\rangle+\lambda^{2} \sum_{\mu} \frac{\langle\beta| H_{1}|\mu\rangle\langle\mu| H_{1}|\alpha\rangle}{E_{D}-E_{v}}\right]+O\left(\lambda^{3}\right)=0
\end{gathered}
$$

$$
c_{\beta}\left(E_{\beta}-E_{a}\right)+\sum_{\alpha} c_{\alpha}\left[\lambda\langle\beta| H_{1}|\alpha\rangle+\lambda^{2} \sum_{\mu} \frac{\langle\beta| H_{1}|\mu\rangle\langle\mu| H_{1}|\alpha\rangle}{E_{D}-E_{v}}\right]=0
$$

- This is an eigenvalue problem

$$
\begin{gathered}
-c_{\beta} \eta_{\beta}+\sum_{\alpha} c_{\alpha}\left(H_{\mathrm{eff}}\right)_{\alpha \beta}=0 \\
\langle\beta| H_{\mathrm{cff}}|\alpha\rangle=\lambda\langle\beta| H_{1}|\alpha\rangle+\lambda^{2} \sum_{\mu} \frac{\langle\beta| H_{1}|\mu\rangle\langle\mu| H_{1}|\alpha\rangle}{E_{D}-E_{v}}
\end{gathered}
$$

- Use the projection operator

$$
\begin{gathered}
P=\sum_{\alpha}^{|\alpha\rangle\langle\alpha|} \\
H_{\mathrm{eff}}=\lambda P H_{1} P+\lambda^{2} P H_{1} \frac{1-P}{E-H_{0}} H_{1} P
\end{gathered}
$$

Example: 3-level system

$$
\begin{gathered}
H=\left(\begin{array}{ccc}
0 & 0 & \lambda M \\
0 & 0 & \lambda M \\
\lambda M & \lambda M & \Delta
\end{array}\right) \quad H_{1}=M\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \\
P=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
H_{\text {eff }}=\lambda P H_{1} P+\lambda^{2} P H_{1} \frac{1-P}{E-H_{0}} H_{1} P \\
P H_{1} P=M\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)=0
\end{gathered}
$$

$$
\left.\begin{array}{rl}
P H_{1} \frac{1-P}{E_{D}-H_{0}} H_{1} P & =M^{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1 / \Delta
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& =-\frac{M^{2}}{\Delta}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0
\end{array}\right) \\
& =-\frac{M^{2}}{\Delta}\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
H_{e f f}=-\frac{M^{2}}{\Delta}\left(\left.\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array} \right\rvert\,\right. & 0 \\
0 & 0 \\
0
\end{array}\right), ~ \begin{array}{ll}
\left|E_{A}\right\rangle=(|1\rangle-|2\rangle) / \sqrt{2} \\
E_{A} & =0 \\
E_{S}=-2 M^{2} / \Delta
\end{array}
$$

Time dependent

- The Hamiltonian of the system is

$$
H=H_{0}+V(t)
$$

- where $\mathrm{V}(\mathrm{t})$, called the perturbation, may be time-dependent
- The state of interest, $\left|\Psi_{i}(\mathrm{t})\right\rangle$, is a solution of the complete Schrodinger equation

$$
i \hbar \frac{\partial}{\partial t}\left|\Psi_{i}(t)\right\rangle=\left[H_{0}+V(t)\right]\left|\Psi_{i}(t)\right\rangle
$$

- This solution is to evolve out of a solution $\mid \Phi_{i}(\mathrm{t})>$ of the unperturbed Schrodinger equation,

$$
\left|\Psi_{i}(t)\right\rangle \rightarrow\left|\Phi_{i}(t)\right\rangle \quad \text { when } t \rightarrow-\infty
$$

- where $\left|\Phi_{i}(\mathrm{t})\right\rangle$ is a solution of

$$
i \hbar \frac{\partial}{\partial t}\left|\Phi_{i}(t)\right\rangle=H_{0}\left|\Phi_{i}(t)\right\rangle
$$

- The first type of problem is one where $\mathrm{V}(\mathrm{t})$ is explicitly time-dependent. It is "turned on," at $\mathrm{t}=0$, and the initial state $\left|\Phi_{\mathrm{i}}(\mathrm{t})\right\rangle$ is a stationary state of H_{0}.
- For t>0 we wish to know the probability for the system to be in some other stationary state $\mid \Phi_{\mathrm{f}}(\mathrm{t})>$ of H_{0}.
- example : an atom in its ground state which is subjected to an applied electromagnetic field.
- The second example : the collision of a particle with a time-independent potentialV of finite range.
- a distant detector D_{f} which, in effect, asks for the probability that the state has evolved into the state $\left|\Phi_{\mathrm{f}}(\mathrm{t})\right\rangle$

- This transition probability is

$$
P_{i \rightarrow f}(t)=\left|\left\langle\Phi_{f}(t) \mid \Psi_{i}(t)\right\rangle\right|^{2}
$$

- $P_{\text {if }}$ is closely related to such observable quantities as scattering cross sections, but to make this connection important details remain to be settled.
- the term transition amplitude can be introduced

$$
A_{i \rightarrow f}(t)=\left\langle\Phi_{f}(t) \mid \Psi_{i}(t)\right\rangle
$$

- lowest-order time-dependent perturbation

$$
\left(i \hbar \frac{\partial}{\partial t}-H_{0}\right)\left|\Psi_{i}(t)\right\rangle=V(t)\left|\Psi_{i}(t)\right\rangle \simeq V(t)\left|\Phi_{i}(t)\right\rangle
$$

- To solve this equation, consider first a similar ordinary differential equation

$$
\left(i \frac{d}{d t}-C\right) \psi(t)=s(t)
$$

- The solution with initial condition $\psi(t)=\phi(t)$ when $t \rightarrow-\infty$ $s(t) \rightarrow 0$ as $t \rightarrow-\infty$ sufficiently rapidly.

$$
\psi(t)=\phi(t)-i \int_{-\infty} e^{-i c\left(t-t^{\prime}\right)} s\left(t^{\prime}\right) d t^{\prime}
$$

- because H_{0} commutes with itself

$$
\left|\Psi_{i}(t)\right\rangle=\left|\Phi_{i}(t)\right\rangle-\frac{i}{\hbar} \int_{-\infty}^{t} e^{-i H_{0}\left(t-t^{\prime}\right) / \hbar} V\left(t^{\prime}\right)\left|\Phi_{i}\left(t^{\prime}\right)\right\rangle d t^{\prime}
$$

- The transition amplitude

$$
A_{i \rightarrow f}(t)=\left\langle\Phi_{f}(t) \mid \Phi_{i}(t)\right\rangle-\frac{i}{\hbar} \int_{-\infty}^{t}\left\langle\Phi_{f}(t)\right| e^{-i H_{0}\left(t-t^{\prime}\right) / \hbar} V\left(t^{\prime}\right)\left|\Phi_{i}\left(t^{\prime}\right)\right\rangle d t^{\prime}
$$

- Consider an atom exposed to a uniform time-dependent electric field $E(t)$, in which case the perturbation $V(t)$ is $-E(t) d$, where d is the operator that corresponds to the component of the atom's electric dipole moment parallel to E.
- this problem has the form $V(t)=f(\mathrm{t}) Q$ where $f(t)$ is a numerical function and Q some observable of the system.
- the initial and final states are eigenstates of H_{0},

$$
\left|\Phi_{i, f}(t)\right\rangle=e^{-i E_{i, f} / \hbar \mid}\left|\Phi_{i, f}\right\rangle
$$

- The transition probability

$$
\begin{aligned}
P_{i \rightarrow f}(t) & \left.=\left|\left\langle\Phi_{f}(t) \mid \Psi_{i}(t)\right\rangle\right|^{2}=\frac{1}{\hbar^{2}}\left|\int_{-\infty}^{t}\left\langle\Phi_{f}(t)\right| e^{-i H_{0}\left(t-t^{\prime}\right) / \hbar} V\left(t^{\prime}\right)\right| \Phi_{i}\left(t^{\prime}\right)\right\rangle\left. d t^{\prime}\right|^{2} \\
& \left.=\frac{1}{\hbar^{2}}\left|\int_{-\infty}^{t} d t^{\prime} e^{i E_{f} t / \hbar} e^{-i E_{i} t^{\prime} / \hbar} e^{-i E_{f}\left(t-t^{\prime}\right) / \hbar} f\left(t^{\prime}\right)\left\langle\Phi_{f}\right| Q\right| \Phi_{i}\right\rangle\left.\right|^{2} \\
& \left.=\frac{1}{\hbar^{2}}\left|\left\langle\Phi_{f}\right| Q\right| \Phi_{i}\right\rangle\left.\right|^{2}\left|\int_{-\infty}^{t} d t^{\prime} e^{i\left(E_{f}-E_{i}\right) t^{\prime} / \hbar} f\left(t^{\prime}\right)\right|^{2} \\
& \left.=\frac{1}{\hbar^{2}}\left|\left\langle\Phi_{f}\right| Q\right| \Phi_{i}\right\rangle\left.\right|^{2}\left|F\left(\omega_{f i}, t\right)\right|^{2}
\end{aligned}
$$

- Consider a periodic perturbation $f(t)=\sin v t$ that turns on at $t=0$,

$$
\begin{aligned}
& F(\omega, t)=\int_{0}^{t} d t^{\prime} e^{i \omega t^{\prime}} \sin v t^{\prime}=\frac{1}{2 i} \int_{0}^{t} d t^{\prime}\left[e^{i(\omega+v) t^{\prime}}-e^{i(\omega-v) t^{\prime}}\right] \\
& =\frac{1}{2} \frac{e^{i(\omega-v) t}-1}{\omega-v}-\frac{1}{2} \frac{e^{i(\omega+v) t}-1}{\omega+v}=i \frac{e^{i(\omega-v) t / 2} \sin \frac{\omega-v}{2} t}{\omega-v}-i \frac{e^{i(\omega+v) t / 2} \sin \frac{\omega+v}{2} t}{\omega+v}
\end{aligned}
$$

- the perturbation is resonant, i.e., has a frequency v that is close to one of the excitation frequencies $\omega_{f \text {. }}$.

$$
\begin{aligned}
|F(\omega, t)|^{2} & \simeq\left|i \frac{e^{i(\omega-v) t / 2} \sin \frac{\omega-v}{2} t}{\omega-v}\right|^{2}+2 \operatorname{Re}\left(e^{i(\omega-v) t / 2} e^{-i(\omega+v) t / 2}\right) \frac{\sin \frac{\omega-v}{2} t \sin \frac{\omega+v}{2} t}{\omega-v} \frac{\operatorname{siv}}{\omega+v} \\
& =\frac{\sin ^{2} \frac{\omega-v}{2} t}{(\omega-v)^{2}}+2 \cos \omega t \sin \omega t \frac{\sin \frac{\omega-v}{2} t}{\omega(\omega-v)}
\end{aligned}
$$

- At resonance,

$$
\left.P_{i \rightarrow f}(t)=\frac{1}{\hbar^{2}}\left|\left\langle\Phi_{f}\right| Q\right| \Phi_{i}\right\rangle\left.\right|^{2} \frac{\sin ^{2} \frac{\omega-v}{2} t}{(\omega-v)^{2}}
$$

- Assume the more realistic form of perturbation

$$
\begin{aligned}
& V(t)=Q e^{-l / \tau} \sin v t \\
& \left.P_{i \rightarrow f}(t)=\frac{1}{4 \hbar^{2}}\left|\left\langle\Phi_{f}\right| Q\right| \Phi_{i}\right\rangle\left.\right|^{2} \frac{1}{(\omega-v)^{2}+1 / \tau^{2}} \quad t \gg \tau
\end{aligned}
$$

The Golden Rule

- Consider the second type of problem
- Unless the scattering is in the exact forward direction, only the second term in contributes,

$$
A_{i \rightarrow f}(t)=-\frac{i}{\hbar}\left\langle\Phi_{f}\right| V\left|\Phi_{i}\right\rangle \int_{-\infty}^{t} e^{-i \omega_{f^{\prime}} t^{\prime} \hbar} d t^{\prime}
$$

- first assume that for some very large but finite time - T in the past,

$$
A_{i \rightarrow f}(T)=-\frac{i}{\hbar}\left\langle\Phi_{f}\right| V\left|\Phi_{i}\right\rangle \int_{-T}^{T} e^{-i \omega_{f^{\prime}} / \hbar} d t^{\prime}
$$

- the transition probability

$$
\left.P_{i \rightarrow f}(T)=\frac{4}{\hbar^{2}}\left|\left\langle\Phi_{f}\right| V\right| \Phi_{i}\right\rangle\left.\right|^{2} \frac{\sin ^{2} \omega_{f i} T}{\omega_{f i}^{2}}
$$

- As $\omega T \rightarrow \infty$ height $\sim T^{2}$, width $\sim T^{-1}$

$$
\int \frac{\sin ^{2} \omega T}{\omega^{2}} d \omega=\pi T
$$

- When $\quad T \rightarrow \infty \quad \omega \rightarrow 0$

$$
\lim _{T \rightarrow \infty} \frac{\sin ^{2} \omega T}{\omega^{2}}=\pi T \delta(\omega)
$$

- The transition probability

$$
\left.P_{i \rightarrow f}(T \rightarrow \infty)=\frac{4 \pi}{\hbar}\left|\left\langle\Phi_{f}\right| V\right| \Phi_{i}\right\rangle\left.\right|^{2} T \delta\left(E_{f}-E_{i}\right)
$$

- the steady transition rate

$$
\left.\frac{d P_{i \rightarrow f}^{\prime}}{d t}=\frac{2 \pi}{\hbar}\left|\left\langle\Phi_{f}\right| V\right| \Phi_{i}\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{i}\right)
$$

- We call this formula Golden rule

