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Regression
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Recap: structure risk

* In general, a machine learning problem solves the
following optimization problem:

mln—Z[ Y m (X 0 +/1u0|| (1)
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Problem definition
Representation
Loss function
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Problem definition
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Regression

* Machine learning: predict a real-valued response
variable Y by features X =[X;,...,X |’

« Statistics: find the relationships between Y and
several covariates X


https://en.wikipedia.org/wiki/Regression_analysis
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* X/'s can be
» Quantitative variables
» Qualitative (categorical) variables
» Transformations of variables, e.g. X, = log (X
» Interaction of several variables, e.g., X; = XX,

e eftcC.



# C387

LInear regression

* Assume that the relationships between y and x is

P
Y~ [+ Z,B]X]
j=1
* Or equivalently,

p
Y=,BO+2,BJ-XJ-+€ (2)
i=1

where ¢ is a random noise with E(¢) =0 and
Var(e) = 6> < o


https://en.wikipedia.org/wiki/Linear_regression
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* f, is the intercept (or bias)

» f; is the coefficient (or weight) of X; it is the
effect of X, when the other covariates are fixed

* Sign

e iSs it zero?
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Categorical covariate

» If X, € {1,2,3} be a categorical variable, what
does f,X; means?

* Transform a categorical covariate by one-hot
encoding: let

X1k={1 'le:I.C for k =1,2,3
0 otherwise

Then equation (2) becomes

3 p
Y= [+ Zﬁlkxlk_l' Zﬁ]X]_I_ €
k=1 =2
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Pros

 Interpretable

 |f the covariates are independent with each
other, the estimates of ’s will be consistent
even when the model is misspecified
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Cons

 Too simple to be true

» |ess predictive (due to large bias)

« may lead to wrong conclusion (e.g. BB 5
etc.)
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Nonparametric regression

In nonparametric regression, we assume

Y =m(X;0) + ¢ (3)

where m(X; @) is an unknown function

parameterized by @ and ¢ is a random noise with
E(e) = 0 and Var(e) = 6% < 0.

T
6. EY|X) = m(X|6)
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Popular methods for

nonparametric regression

* Local regression

» Basis representation

e neural networks

» gradient boosting

» splines (piecewise polynomial)

e etcC.


https://en.wikipedia.org/wiki/Gradient_boosting
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Nonparametric regression by

piecewise linear functions

~or simplicity, we’ll illustrate the idea of piecewise
inear regression with X € R. Let

m(X) = po+ X+ (X —xp) - (X > xp) + -+

= Py + 01X + (X — xl)"' 4 ... (4)

then m(X) becomes a piecewise linear function
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RelLU activation vyield to
piecewise linear functions

 Recall that

x Iftx
>O éx_|_

0 otherwise

RelLU(x) = {

» Equation (4) can be rewritten as

m(X) = fy+ X + fo(X —x)" + -

= o BX+ (X b+

weight bias



model = tf.keras.Sequential()
model .add(layers.Dense(10, activation="relu’, input_shape=(1,)))
model .add(layers.Dense(1, activation="linear'))

model . compile(optimizer="sgd’, loss="mse')
history = model.fit(x, y, batch_size=n, epochs=1000, verbose=0)

10
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L.oss function
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| east squares estimation

Let r = Y —m (X;0) denote the prediction error:
» the sign of r is not important (usually)

» the squared—error loss r? is the most popular
loss function for regression problems for both
numerical and decision—theoretic reasons
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| east squares estimation

* In linear regression, we solve

2
1y :
min — > |Yi=fy— ) BX;| +AlBl (5)
bobro-y 14 P

* In nonparametric regression, we solve

1 ¢ :
n — Y. — X: ]
min- 3 [1i=m (X:0)| -+ Al ©®



# C387

Other popular choices

 Absolute—error loss:
L(K?>=|Y—?|
 Huber loss:

Va\ 2 VN
N EIE fly—7] <o
L5(Y, Y) —

5 < | Y — f/| — %5) otherwise,
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—psilon—sensitive loss:

0 if|Y—IA/ <e€

L, (y,)Af) =
|Y—f/| — ¢ otherwise,
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blue: quadratic
black: huber

red: e-sensitive
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Regularizations



Popular regularizations for
linear regression

» Ridge regression (¢, regularization):

P
Bl =) B
j=1
» LASSO regression (¢, regularization):

P
VIEDA
j=1

 Elastic net:

P P
Bl=(-a)- Y F+a- Y g
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Ridge regression

Equation (5) becomes
2

min —Z Yi_ﬁO_ZlBinj +/12,B]2 (7)
ﬁoﬁlv“’ﬁp n i=1 j=1 j=1

« works well with correlated predictors
(multicollinearity)

 biased estimation but with smaller variance and
MSE

« shrink ﬁj’s toward O


https://en.wikipedia.org/wiki/Multicollinearity
https://en.wikipedia.org/wiki/Multicollinearity
https://en.wikipedia.org/wiki/Multicollinearity
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Ridge regression

—quation (7) comes from the Lagrangian of

2
1Y X
I _Z Yi_lBO_Z:Binj
Z ni=1 j=1

BosBise- B,

P
subject to Z pr<C

j=1

for some hyperparameter C
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Ridge regression

B2 1

OLS estimate

Ridge estimate \<

https://www.i2tutorials.com/ridge-regression-in-machine-learning/
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LASSO

—quation (5) becomes

2
min —Z Yi_ﬁO_Z:Binj +AZ|'BJ|
ﬁOnBIV“’ﬂp n =1 j=1 j=1

« automatic variable selection with model
consistency

* biased estimation but sign consistent

» works poorly with correlated covariates
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LASSO vs ridge regression

= =

https://[towardsdatascience.com/can-you-answer-these-5-questions-about-lasso-and-ridge-
regression-113853614180
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Elastic net

—lastic net is a linear combination of ridge and
_ASSO.

* inherit the pros from both ridge and LASSO

* introduce an addition hyperparameter «a
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Regularizations

Ridge
- Lasso
—— Elastic Net

D 4

Bs

https://venali.medium.com/conventional-guide-to-supervised-learning-with-scikit-learn-elastic-
net-generalized-linear-80ecc2574052
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Popular regularizations for

nonparametric regression

* Dropout

» Early stopping

« Data augmentation

e eftcC.
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(b) After applying dropout.

a) Standard Neural Net

Randomly ignore a fraction of hidden neurons in each

iteration of gradient descent
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model = tf.keras.Sequential()
model .add(layers.Dense(100, activation="relu’, input_shape=(1,)))

model .add(layers.Dropout(rate=0.5))

model .add(layers.Dense(1l, activation="linear"'))

10 -
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Early stopping
(&

w1 w1

Early stopping restricts the gradient descent algorithm
to a relatively small volume of parameter space in the
neighborhood of the initial parameter @,
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early_stop = tf.keras.callbacks.EarlyStopping(monitor="loss', patience=1, min_delta=1e-4)
history = model.fit(x, y, batch_size=n, epochs=1000, callbacks=|early_stop|, verbose=0)
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Chapter 16 of Principles and Techniqgues of Data
Science

Chapter 7 of Deep Learning by Goodfellow et al.

tf.keras.layers.Dropout

tf.keras.callbacks.EarlyStopping



https://www.textbook.ds100.org/
https://www.textbook.ds100.org/
https://www.deeplearningbook.org/contents/regularization.html
https://www.deeplearningbook.org/
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
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Homework

1. Find the best regression model (try your best)
for the diabetes dataset.

2. Is “Average blood pressure” an important factor
for diabetes disease”? Explain this by cross—
validations.

Bonus: use auto—-sklearn or AutoKeras to search
for a good regression model automatically.



https://scikit-learn.org/stable/datasets/index.html#diabetes-dataset
https://automl.github.io/auto-sklearn/master/
https://autokeras.com/

