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Recap: structure risk
• In general, a machine learning problem solves the 

following optimization problem:

min
θ

1
n

n

∑
i=1

[L (Yi, m (Xi; θ))] + λ∥θ∥ (1)
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Agenda
• Problem definition 

• Representation 

• Loss function 

• Regularization
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Problem definition

# C387



Regression
• Machine learning: predict a real-valued response 

variable  by features  

• Statistics: find the relationships between  and 
several covariates 

Y X = [X1, …, Xp]⊤

Y
X
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https://en.wikipedia.org/wiki/Regression_analysis


• 's can be 

• Quantitative variables 

• Qualitative (categorical) variables 

• Transformations of variables, e.g.  

• Interaction of several variables, e.g.,  

• etc.

Xj

X2 = log (X1)
X3 = X1X2
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Linear regression
• Assume that the relationships between  and  is 

• Or equivalently, 
 
 
 
where  is a random noise with  and 

y x

ϵ E (ϵ) = 0
Var(ϵ) = σ2 < ∞

Y ≈ β0 +
p

∑
j=1

βjXj

Y = β0 +
p

∑
j=1

βjXj + ϵ (2)
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•  is the intercept (or bias) 

•  is the coefficient (or weight) of ; it is the 

effect of  when the other covariates are fixed 

• sign 

• is it zero?

β0

βj Xj

Xj
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Categorical covariate
• If  be a categorical variable, what 

does  means? 

• Transform a categorical covariate by one-hot 
encoding: let 
 
 
 
Then equation (2) becomes

X1 ∈ {1,2,3}
β1X1

X1k = {1 if X1 = k
0 otherwise

for k = 1,2,3

Y = β0 +
3

∑
k=1

β1kX1k +
p

∑
j=2

βjXj + ϵ
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Pros
• Interpretable 

• If the covariates are independent with each 
other, the estimates of ’s will be consistent 
even when the model is misspecified

βj
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Cons
• Too simple to be true 

• less predictive (due to large bias) 

• may lead to wrong conclusion (e.g. 涓滴理理論 
etc.)
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Nonparametric regression
In nonparametric regression, we assume 

where  is an unknown function 
parameterized by  and  is a random noise with 

 and .

m(X; θ)
θ ϵ

E (ϵ) = 0 Var(ϵ) = σ2 < ∞

Y = m(X; θ) + ϵ (3)

i.e.  E(Y |X) = m(X |θ)
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Popular methods for 
nonparametric regression

• Local regression 

• Basis representation 

• neural networks 

• gradient boosting 

• splines (piecewise polynomial) 

• etc.
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Nonparametric regression by 
piecewise linear functions

For simplicity, we’ll illustrate the idea of piecewise 
linear regression with . Let  

 
then  becomes a piecewise linear function

X ∈ ℝ

m(X)

m(X) = β0 + β1X + β2(X − x1) ⋅ I(X > x1) + ⋯
= β0 + β1X + β2(X − x1)+ + ⋯ (4)
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ReLU activation yield to 
piecewise linear functions

• Recall that 

• Equation (4) can be rewritten as

ReLU(x) = {x if x > 0
0 otherwise

≜ x+

m(X) = β0 + β1X + β2(X − x1)+ + ⋯
= β0 + β1X + (β2X − b1)+ + ⋯

weight bias
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Loss function
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Least squares estimation
Let  denote the prediction error: 

• the sign of  is not important (usually) 

• the squared-error loss  is the most popular 
loss function for regression problems for both 
numerical and decision-theoretic reasons 

r = Y − m (X; θ)
r

r2
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Least squares estimation
• In linear regression, we solve 

• In nonparametric regression, we solve

min
β0,β1,…,βp

1
n

n

∑
i=1

Yi − β0 −
p

∑
j=1

βjXij

2

+ λ∥β∥

min
θ

1
n

n

∑
i=1

[Yi − m (Xi; θ)]
2

+ λ∥θ∥

(5)

(6)
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Other popular choices
• Absolute-error loss: 

• Huber loss:

L (Y, ̂Y) = Y − ̂Y

Lδ (Y, ̂Y) =
1
2 (Y − ̂Y)

2
if  Y − ̂Y ≤ δ

δ ( Y − ̂Y − 1
2 δ) otherwise,
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• Epsilon-sensitive loss:

Lϵ (y, ̂y) =
0 if  Y − ̂Y ≤ ϵ

Y − ̂Y − ϵ otherwise,
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blue: quadratic 
black: huber 
red: !-sensitive𝜖
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Regularizations
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Popular regularizations for 
linear regression

• Ridge regression (  regularization): 

• LASSO regression (  regularization): 

• Elastic net:

ℓ2

ℓ1

|β∥ =
p

∑
j=1

β2
j

|β∥ =
p

∑
j=1

βj

|β∥ = (1 − α) ⋅
p

∑
j=1

β2
j + α ⋅

p

∑
j=1

βj
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Ridge regression
Equation (5) becomes  
 
 

• works well with correlated predictors 
(multicollinearity) 

• biased estimation but with smaller variance and 
MSE 

• shrink ’s toward 0βj

min
β0,β1,…,βp

1
n

n

∑
i=1

Yi − β0 −
p

∑
j=1

βjXij

2

+ λ
p

∑
j=1

β2
j (7)
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Ridge regression
Equation (7) comes from the Lagrangian of 

for some hyperparameter C

min
β0,β1,…,βp

1
n

n

∑
i=1

Yi − β0 −
p

∑
j=1

βjXij

2

subject to
p

∑
j=1

β2
j ≤ C
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Ridge regression

https://www.i2tutorials.com/ridge-regression-in-machine-learning/
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LASSO
Equation (5) becomes 
 

• automatic variable selection with model 
consistency 

• biased estimation but sign consistent 

• works poorly with correlated covariates

min
β0,β1,…,βp

1
n

n

∑
i=1

Yi − β0 −
p

∑
j=1

βjXij

2

+ λ
p

∑
j=1

βj
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LASSO vs ridge regression

https://towardsdatascience.com/can-you-answer-these-5-questions-about-lasso-and-ridge-
regression-1138536f4f80
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Elastic net
Elastic net is a linear combination of ridge and 
LASSO. 

• inherit the pros from both ridge and LASSO 

• introduce an addition hyperparameter α
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Regularizations

https://venali.medium.com/conventional-guide-to-supervised-learning-with-scikit-learn-elastic-
net-generalized-linear-80ecc2574052
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Popular regularizations for 
nonparametric regression

• Dropout 

• Early stopping 

• Data augmentation 

• etc.
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Dropout

Randomly ignore a fraction of hidden neurons in each 
iteration of gradient descent
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Early stopping
Deep Learning Srihari

Early Stopping vs L2 regularization

18

• Two weights, Solid contour lines: contours of negative log-likelihood
• Left: dashed lines indicates trajectory of SGD. Rather than stopping at point w*

that minimizes cost, early stopping results in an earlier point in trajectory
• Right: dashed circles indicate contours of L2 penalty which causes the minimum

of the total cost to lie nearer the origin than the minimum of the the unregularized
cost

Early stopping restricts the gradient descent algorithm 
to a relatively small volume of parameter space in the  
neighborhood of the initial parameter θ0
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Homework
1. Find the best regression model (try your best) 

for the diabetes dataset. 

2. Is “Average blood pressure” an important factor 
for diabetes disease? Explain this by cross-
validations. 

Bonus: use auto-sklearn or AutoKeras to search 
for a good regression model automatically.
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