
Artificial neural
networks

T547

Agenda
• Computational graph

• Automatic differentiation

• Neurons

• Representing functions by artificial neural
networks

• The back propagation algorithm

T547

Computational
graphs

T547

Computational graphs
A “language” (in terms of graph) to describe a
function; e.g., the expression �
can be described as

e = (a + b) × (b + 1)

c = a + b
d = b + 1
e = c × d

T547

Computational graphs

http://colah.github.io/posts/2015-08-Backprop/

T547

http://colah.github.io/posts/2015-08-Backprop/

Evaluate a computational graph

http://colah.github.io/posts/2015-08-Backprop/

T547

http://colah.github.io/posts/2015-08-Backprop/

Computational graph for
logistic regression

CHAPTER 1. INTRODUCTION

x1x1

�

w1w1

⇥

x2x2w2w2

⇥

+

Element
Set

+
⇥

�
xxww

Element
Set

Logistic
Regression

Logistic
Regression

Figure 1.3: Illustration of computational graphs mapping an input to an output where
each node performs an operation. Depth is the length of the longest path from input to
output but depends on the definition of what constitutes a possible computational step.
The computation depicted in these graphs is the output of a logistic regression model,
�(wT

x), where � is the logistic sigmoid function. If we use addition, multiplication and
logistic sigmoids as the elements of our computer language, then this model has depth
three. If we view logistic regression as an element itself, then this model has depth one.

instructions can refer back to the results of earlier instructions. According to this
view of deep learning, not all of the information in a layer’s activations necessarily
encodes factors of variation that explain the input. The representation also stores
state information that helps to execute a program that can make sense of the input.
This state information could be analogous to a counter or pointer in a traditional
computer program. It has nothing to do with the content of the input specifically,
but it helps the model to organize its processing.

There are two main ways of measuring the depth of a model. The first view is
based on the number of sequential instructions that must be executed to evaluate
the architecture. We can think of this as the length of the longest path through
a flow chart that describes how to compute each of the model’s outputs given
its inputs. Just as two equivalent computer programs will have different lengths
depending on which language the program is written in, the same function may
be drawn as a flowchart with different depths depending on which functions we
allow to be used as individual steps in the flowchart. Figure 1.3 illustrates how this
choice of language can give two different measurements for the same architecture.

Another approach, used by deep probabilistic models, regards the depth of a
model as being not the depth of the computational graph but the depth of the
graph describing how concepts are related to each other. In this case, the depth

7

T547

Derivatives on Computational
Graphs

Idea: understand derivatives on the edges together
with chain rule. For example,

http://colah.github.io/posts/2015-08-Backprop/

∂c
∂a

=
∂(a + b)

∂a
= 1

∂e
∂c

=
∂(c × d)

∂c
= d = 2

∂e
∂a

=
∂(c × d)

∂a
= d ×

∂c
∂a

= d = 2

T547

http://colah.github.io/posts/2015-08-Backprop/

Derivatives on Computational
Graphs

http://colah.github.io/posts/2015-08-Backprop/

∂e
∂b

= 2 × 1 + 3 × 1 = 5

T547

http://colah.github.io/posts/2015-08-Backprop/

Artificial Neurons

T547

Artificial Neurons
An artificial neuron is a special case of
computation graph that represents 
 
 

• � : bias

• � : weight

• � : activation function

b

wj

f

y = f b +
p

∑
j=1

wjxj

unknown parameters to be learned

T547

Derivatives of artificial neurons

�

�

�

∂y
∂b

= f′ � b +
p

∑
j=1

wjxj

∂y
∂wj

= f′� b +
p

∑
j=1

wjxj ⋅ xj

∂y
∂xj

= f′� b +
p

∑
j=1

wjxj ⋅ wj

T547

Artificial Neurons

• Computational Methods and Optimization
• https://cs231n.github.io/convolutional-networks/

T547

https://www.researchgate.net/publication/234055177_Computational_Methods_and_Optimization
https://cs231n.github.io/convolutional-networks/

Example: linear regression

http://www.briandolhansky.com/blog/artificial-neural-networks-linear-regression-part-1

T547

http://www.briandolhansky.com/blog/artificial-neural-networks-linear-regression-part-1

Example: logistic regression

https://towardsdatascience.com/a-logistic-regression-from-scratch-3824468b1f88

T547

https://towardsdatascience.com/a-logistic-regression-from-scratch-3824468b1f88

Rectifier activation function

ReLU(x) = {x if x > 0
0 otherwise

= max (0,x)
≜ x+

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

ReLU′�(x) = {1 if x > 0
0 otherwise

T547

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

Artificial neural
networks

Directed graph of neurons

T547

Example: feed-forward
networks

Computational Methods and Optimization

T547

https://www.researchgate.net/publication/234055177_Computational_Methods_and_Optimization

Feed-forward networks
• An ANN in which the connection between

neurons does not form a cycle. It is the simplest
ANN structure as information is only processed
in one direction and never backwards.

• The neurons are usually arranged layer-by-layer.

T547

Example: feed-forward
networks (deeper)

https://cs231n.github.io/convolutional-networks/

T547

https://cs231n.github.io/convolutional-networks/

z1j = σ1 (< w1j, x > + b1j)

T547

z2j = σ2 (< w2j, x > + b2j)

T547

 
The empirical risk of a feed-forward networks
becomes

z1 = σ1 (W1x + b1)
z2 = σ2 (W2z1 + b2)

⋮
zℓ = σℓ (Wℓzℓ−1 + bℓ)

f(x) = σf (Wf zℓ + bf)

R =
1
n

n

∑
i=1

L (yi, f(xi))

T547

Example: recurrent neural
networks

https://bit.ly/2HIXgH9

T547

Example: convolutional neural
networks

Granulated deep learning and Z-numbers in motion detection and object recognition

T547

https://www.isical.ac.in/~sankar/paper/Pal-2019.pdf

Forward evaluation

https://stevenmiller888.github.io/mind-how-to-build-a-neural-network/

T547

https://stevenmiller888.github.io/mind-how-to-build-a-neural-network/

Recap: feed-forward networks

 
The empirical risk of a feed-forward networks
becomes

z1 = σ1 (W1x + b1)
z2 = σ2 (W2z1 + b2)

⋮
zℓ = σℓ (Wℓzℓ−1 + bℓ)

f(x) = σℓ+1 (Wℓ+1zℓ + bf)

R =
1
n

n

∑
i=1

L (yi, f(xi))

T547

Automatic differentiation by
backpropagation

Obtain � automatically by chain rules:∇R

∂R
∂Wℓ+1

=
1
n

n

∑
i=1

∂L (yi, f(xi))
∂f

∂f
∂Wℓ+1

,

∂R
∂Wℓ

=
1
n

n

∑
i=1

∂L (yi, f(xi))
∂f

∂f
∂zℓ

∂zℓ

Wℓ
,

∂R
∂Wℓ−1

=
1
n

n

∑
i=1

∂L (yi, f(xi))
∂f

∂f
∂zl

∂zℓ

∂zℓ−1

∂zℓ−1

∂Wℓ−1
,

⋮

T547

https://littleaich.github.io/deeplearning/2017/02/24/Backpropagation.html

Why does deep learning so
successful?

• Universal approximation

• ReLU networks are universal approximations via
piecewise linear or constant functions

• Overparameterization in deep learning does not
lead to overfitting

• Gradient descent finds global minima of deep
neural networks

T547

http://proceedings.mlr.press/v125/kidger20a.html
https://ieeexplore.ieee.org/document/9234795
https://ieeexplore.ieee.org/document/9234795
http://proceedings.mlr.press/v97/arora19a.html
http://proceedings.mlr.press/v97/arora19a.html
http://proceedings.mlr.press/v97/du19c.html
http://proceedings.mlr.press/v97/du19c.html

Summary
• Computational graphs are graphical

representations of mathematical functions
equipped with automatic differentiations

• Neural networks are special cases of
computational graphs

• Theoretical justifications for the success of deep
neural networks

T547

