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Abstract 

Microwave transmission is a great invention on human history, for example, cell phone has already 

been indispensable in our lives, and high frequency of microwave engineering is especially important, 

so in this point of view, we construct high frequency of band-pass filters, center frequency at 

2.1414GHz, and compare different orders of these. Results suggest that higher order of band-pass 

filter indeed has greater rate of decay, but rate of decay doesn’t grow linearly when conducting higher 

order of filter, which suggest that the more we want, the greater payoff would come! Secondly, 

asymmetry of decay rate on both side of bandwidth is observed both on measurement results and 

simulation. 
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Introduction 

Nowadays wireless communications has developed, and microwave signal to transmit information has 

already been part of our live. By using transmitter we shoot high-frequency wave and modulation it, 

and receiver receive signal then demodulation it. The quality of reception depends on the frequency 

range and sensitivity of filter. Since the frequency of PHS (personal handyphone system) is around 

2GHz, we wanted to make a filter applied for 2GHz frequency. Considering techniques and back 

ground knowledge we have, we produce 2nd,3rd ,and 4th Chebyshev filters, and the filter’s center 

frequency is 2.1414GHz with bandwidth of 642MHz. 

 

 

 

 

 

 

 

 

 

 

 



Method and Material 

1.Filter Transformations 

Impedance and Frequency Scaling(Fig 1.)      

(i)Impedance scaling 

In the prototype design, the prototype is normalized designs having a source impedance of 

 and a cutoff frequency of . A source resistance of  can be obtained by 

multiplying the impedances of the prototype design by . 

Then, if we let primes denote impedance scaled quantities, we have the new filter component values 

given by 

       (eq.1a) 

          (eq.1b) 

         (eq.1c) 

     (eq.1d) 

Where L, C, are the component values for the original prototype. 

(ii)Frequency scaling for low-pass filters. 

To change the cutoff frequency of a low-pass prototype from unity to  requires that we scale 

the frequency dependence of the filter by the factor 1/ , which is accomplished by replacing ω by 

ω/ : 

ω←     (eq.2) 

where  is the new cutoff frequency. 

The new element values are determined by applying the substitution of (eq.2) to the series 

reactances ,  , and shunt susceptances,  ,of the prototype filter. 

Thus 

 , 

 , 

which shows that the new element values are given by 

    (eq.3a) 

    (eq.3b) 

When both impedance and frequency scaling are required, the results of (eq.1) can be combined 

with (eq.3) to give  

, 



. 

 

(iii)Bandpass transformations  

If  and  denote the edges of the passband, then a bandpass response can be obtained using 

the following frequency substitution: 

ω←    (eq.4) 

where   

Then the new filter elements are determined by using (eq.4) in the expressions for the series 

reactance and shunt susceptances. Thus, 

 
Which shows that a series inductor,  ,is transformed to a series LC circuit with element values, 

, 

. 

Similarly, 

 
which shows that a shunt capacitor,  , is transformed to a shunt LC circuit with element values, 

(Figure.2) 

, 

. 

 

2.Bandpass Filters Using Capacitively Coupled Series Resonators 

   The type of bandpass filter that can be conveniently fabricated in microstrip form is the 

capacitive-gap coupled resonator filter shown in Fig 3.An 2th order filter of this form will use 2 

resonator series sections of transmission line with 3 capacitive gaps between them. The filter can then 

be modeled as shown in Fig 4. The resonators are approximatelyλ/2 long at the center frequency, . 

   Secondly, we redraw the equivalent circuit of Fig 4. with negative-length transmission line sections 

on either side of the series capacitors. The lines of lengthΦ will beλ/2 long at , so the electrical 

length, ,of the i-th section in Figure.3,4 is with <0.  



   (eq.5) 

The reason for doing this is that the combination of series capacitor and negative-length transmission 

line forms the equivalent circuit of an admittance inverter. In order for this equivalence to be valid, the 

following relationship must hold between the electrical length of the lines and the capacitive 

susceptance: 

    (eq.6a) 

   Then the resulting inverter constant can be related to the capacitive susceptance as  

       (eq.6b) 

   Between any two consecutive inverters we have a transmission line section that is effectively 2θ in 

length.  This line is approximately  long in the vicinity of the bandpass region of the filter, and 

has an approximate equivalent circuit that consists of a shunt parallel LC resonator, as in Fig 5. 

   If we let , the shunt impedance  can be written for small  as  

   (eq.7) 

   We know the impedance near resonance of a parallel LC circuit is  

    (eq.8) 

with . Equation this to (eq.7) gives the equivalent inductor and capacitor values as  

   (eq.9a) 

   (eq.9b) 

   The end sections of the circuit of Figure.6 require a different treatment. The lines of lengthθon 

either end of the filter are matched to ,and so can be ignored. The end inverters, and , can 

each be represented as a transformer followed by a  section of line, as shown in Figure .9.The 

ABCD matrix of a transformer with a turns ratio 2 in cascade with a quarter-wave line is 

 
   Comparing this to the ABCD matrix of an admittance inverter shows that the necessary turns ratio 

is . The  line merely produces a phase shift, and so can be ignored. 

   Using these results for the interior and end sections allow the circuit of Figure.6 to be transformed 

into the circuit of Fig 7.Next,we show that the admittance inverters have the effect of transforming a 

shunt LC resonator into a series LC resonator, leading to the final equivalent circuit of Fig 8. This will 

then allow the admittance inverter constants, ,to be determined from the element values of a 



low-pass prototype. 

   With reference to Fig 7., the admittance just to the right of the  inverter is  

 
since the transformer scales the load admittance by the square of the turns ratio. Then the admittance 

seen at the input of the filter is  

 

   (eq.10) 

These results also use the fact, from (eq.9),that  for all LC resonators. 

Now the admittance seen looking into the circuit of Fig 8. is  

 

     (eq.11) 

which is identical in form to (eq.10). Thus, the two circuits will be equivalent if the following 

conditions are met: 

    (eq.12a) 

     (eq.12b) 

    (eq.12c) 

   We know  and  from (eq.9);  and  are determined from the element values of a 

lumped-element low pass prototype which has been impedance scaled and frequency transformed to 

a bandpass filter. Using the result in Fig 2. and the impedance scaling formulas of (eq.1)allows the  

and  values to be written as 

   (eq.13a) 

  (eq.13b) 

   (eq.13c) 

   (eq.13d) 



where  is the fractional bandwidth of the filter. Then (eq.12)can be solved for the 

inverter constants with the following results: 

   (eq.14a) 

    (eq.14b) 

    (eq.14c) 

The design equations for a bandpass filter with Nth order capacitive-gap coupled resonator filter are 

 

    for n=2,3,…,N, 

 
We use (eq.14) to find the admittance inverter constants, ,from the low-pass prototype value 

( ) and the fractional bandwidth, .There will be N+1 inverter constants for Nth order filter. Then 

(eq.6b) can be used to find the susceptance, ,for the i-th coupling gap.  

    (eq.6b) 

Finally,the electrical length of the resonator sections can be found from (eq.6a) and (eq.5): 

 
 

The center of frequency is 2.1414GHz, which would cause the width between the connecting 

transmission lines be too small, over our construction techniques, so we replaced this by using 

capacitor, and the magnitude of capacitor is determined by the following formula.      

 
 

 

 

 

 

 



Chebyshev filter 2nd 3rd 4th 

(GHz) 2.1414 

(GHz) 1.84415 

(GHz) 2.48657 

(pf) real/ approximate 1.978/2 1.001/1 2.179/2 

(pf) real/ approximate 0.5724/0.5 0.5000/0.5 0.5008/0.5 

(pf) real/ approximate 0.9637/1 0.5000/0.5 0.4084/0.4 

(pf) real/ approximate Non 1.001/1 0.5008/0.5 

(pf) real/ approximate Non Non 1.017/1 

(m) 0.0265 0.0285 0.02662 

(m) 0.0283 0.0306 0.03104 

(m) Non 0.0285 0.03104 

(m) Non Non 0.02843 

Table 1. Magnitude of capacitors and length of transmission lines for construction. 

 

Figure 1. Low-pass filter prototype,N=2. 

 

 

Figure 2. Summary of Prototype Filter Transformations.  

 

 
Figure 3. The capacitive-gap coupled resonator bandpass filter. 

 



 

Figure 4.Transmittion line model. 

 

 

Figure 5. Equivalent circuit of the transmission line of length 2θ. 

 

 

 

Figure 6. Transmission line model with negative-lengh sections forming admittance inverters. 

 

 

Figure 7. Using results of Figure.5 and Figure.9 for the N=2 case. 

 

Figure 8. Lumped-element circuit for a bandpass filter for N=2. 

 



 

Figure 9. Equivalent circuit of the admittance inverters. 

Results and discussion 

We design three different levels of Chebyshev band-pass filters, second level, third level, and fourth 

level and compare S-parameter both by measurements and simulation. The simulation model is based 

on Chebyshev Response formula. Ripple is denoted as R , Chebyshev polynomial denoted as ( )nC x , 

and then the formula is  
2 /10

21 2 2
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However this formula is suited for low-pass filter, from low-pass to band-pass, one may play a trick on 

this formula just by a change of variable. 0

0

1 ffx
f f

 
= − ∆  

, 

0f  is the band center, 
0

BW
f

∆ =   , BW  is the bandwidth. 
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Figure10. S12 measurement of Chebyshev 2nd 

band-pass filter. 

0 1 2 3 4 5
-50

-40

-30

-20

-10

0

S1
2(

db
)

frequency(GHz)

Figure11. simulation result of Chebyshev 2nd 

filter. 
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Figure12. S12 measurement of Chebyshev 3rd 

band-pass filter. 
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Figure13. simulation result of Chebyshev 3rd 

filter. 
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Figure 14. S12 measurement of Chebyshev 4th 

band-pass filter. 
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Figure 15. simulation result of Chebyshev 4th 

filter. 

One may have discovered that the higher order 

of the band-pass filter, the greater rate of decay. 

For 2nd Chebyshev band-pass filter, the band 

center 0f  at 2.1414(GHz), from 1.320 GHz to 

1.844 GHz, the filter could be viewed decaying 

linearly (R-square>0.9), so we fit this range and 

the slope would represent the rate of decay. For 

2nd Chebyshev filter, the rate of decay is 

27.92dB/GHz, and 34.57dB/GHz for simulation. 

For 3rd Chebyshev filter, rate of decay is 

58.54dB/GHz, 65.43dB/GHz for simulation. For 

4th Chebyshev filter, rate of decay is 57.86 

dB/GHz, 93.24dB/GHz for simulation. You may 

be confused of this results, because 3rd filter 

shows greater rate of decay than 4th filter, but if 

you view carefully on Fig 12. and Fig 14., 4th 

filter rate of decay is obviously greater than 3rd 

by eye-ball, so what happen here is 4th filter 

shift a little bit to the right, from 0f =2.1414 

GHz to 0f =2.2414GHz, therefore we may alter 

the range of fitting, and the rate of decay turns 

out to be 76.45dB/GHz after adjustment.       
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Figure 16. Linear fit of 3rd Chebyshev filter,    

from 1.320GHz to 1.844GHz, slope=58.57 

dB/GHz, R-square=0.994                                       
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Figure 17. Linear fit of 2nd Chebyshev filter, from 

1.320GHz to 1.844GHz, slope=27.92 dB/GHz, 

R-square=0.999   
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      Figure 18. Linear fit of 2nd Chebyshev      

filter simulation, from 1.320GHz to 

1.844GHz, slope=34.57 dB/GHz, 

R-square=0.999   
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    Figure 19. Linear fit of 3rd Chebyshev filter  

simulation, from 1.320GHz to 1.844GHz, 

slope=65.43 dB/GHz, R-square=0.99



 2nd Chebyshev filter 3rd Chebyshev filter 4th Chebyshev filter 

measurement 27.92 58.57 76.45 

Simulation 34.57 65.43 93.24 

Table 2. Rate of decay(dB/GHz) for real and simulation results   

 

Higher level of band-pass filter indeed has greater rate of decay. The rate of decay of 3rd Chebyshev 

filter is 210% of 2nd Chebyshev filter, however the rate of decay of 4th Chebyshev filter is 130% of 3rd 

Chebyshev filter, which suggest that the greater rate of decay we want to achieve, the payoff would be 

greater. In other words rate of decay doesn’t grow linearly while we conducting higher level of 

band-pass filter. Though we didn’t analyze the rate of decay on right side of bandwidth, but one could 

observe right side of bandwidth decay rate is less than left side by eye-ball, and this phenomena could 

be observed on simulation results also, but for measurement results, right side of bandwidth rate of 

decay is far cry from simulation results, and we still haven’t found out a reasonable explanation, 

however, this may be an effect of we used approximate magnitude of capacitor for the actual value of 

capacitor.    

Conclusion 

Asymmetry of decay rate on both side of bandwidth is observed both on measurement results and 

simulation. Higher level of band-pass filter indeed has greater rate of decay, but rate of decay doesn’t 

grow linearly when conducting higher level of filter, which suggest that the more we want, the greater 

payoff would come!   
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