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spin 1/2 system
• A particle may have an intrinsic angular 

momentum called spin

• Electrons, protons, and neutrons are all 
examples of spin-1/2 particles

• If one measure the z-component Sz(or Sx, 
Sy) of the spin angular momentum for one 
of these particles, he gets

 
Sz = ± 

2



Stern-Gerlach experiment
• A stream of atoms moving from the right 

passes between the asymmetric poles of a 
magnet. Particles with different values of μz 
are deflected in different directions. The final 
position of the atom determines its μz
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Fig. 2.10 The Stern–Gerlach experiment. A stream of atoms moving from the right passes between the
asymmetric poles of a magnet. Particles with different values of µz are deflected in different
directions. The final position of the atom determines its µz.

Amplitude vectors

In the two-beam interferometer, the photon can be found in one of two distinct beams. A
spin-1/2 particle can be found to have one of two distinct values for Sz. The same quantum
rules that apply to the photon also apply to the spin-1/2 particle. That is, in addition to
the “spin up” and “spin down” situations, there are also situations which are complex
superpositions of these two:

α (spin up) + β (spin down) . (2.30)

The coefficients α and β are probability amplitudes for finding the value of Sz to be +!/2
or −!/2, respectively. We can represent any of these superpositions by a column vector of
the probability amplitudes. The amplitude vectors

z+ =
(

1
0

)
and z− =

(
0
1

)
, (2.31)

represent situations where the spin component Sz definitely has either its positive or negative
possible value. The superposition vector

(
α

β

)
= αz+ + βz−, (2.32)

is also possible, but what does it mean?
It turns out6 that the superposition vectors describe situations in which some spin com-

ponent other than Sz has a definite value. For example, suppose we were to consider Sx.
The amplitude vectors

x+ = 1√
2

(
1
1

)
and x− = 1√

2

(
1

−1

)
, (2.33)

6 What do we mean by “It turns out”? When we use this phrase, we may be appealing to theoretical developments
that we have not yet discussed, or to experimental results, or to both. Physics, unlike mathematics, cannot really
be developed in a linear way from a set of explicit axioms. The justification for any theory lies in experiments,
but experiments cannot be understood without a theory! The best we can hope for in empirical science is a
consistent, testable, mutually reinforcing system of ideas and observations. When we say “It turns out,” we are
simply opening a door into that system.

 

µ = γ


S γ is gyromagnetic ratio

 E = −

µ ⋅

B



the spin state

• superpositions of spin-up and spin-down 
states 

z+ = 1
0

⎛
⎝⎜

⎞
⎠⎟

       z− = 0
1

⎛
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⎞
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α
β

⎛

⎝
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⎞

⎠
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Bloch sphere
z

x

y
θ

x+ = 1
2
z+ + 1

2
z−

x− = 1
2
z+ − 1

2
z−

y+ = 1
2
z+ + i

2
z−

y− = 1
2
z+ − i

2
z−

why? x− x+ = 0

z+ x+
2
= z− x+

2
= 1
2



change of basis
• Suppose we choose a direction in the xz-

plane that is inclined at an angle θ from the 
z-axis.  Then the amplitude vectors

θ+ = cosθ
2
z+ + sinθ

2
z−

θ− = sinθ
2
z+ − cosθ

2
z−



Pauli operators
• Hermitian operators in 2 level systems

 
Sθ =

2
cosθσ z + sinθσ x( ) = 2

cosθ sinθ
sinθ −cosθ
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Projection operator
• the projection to +x and -x direction

x+ x+ = 1
2
z+ + 1

2
z−
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Sx =

2
σ x =


2

x+ x+ − x− x−( ) = 2 z+ z− + z− z+( )
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eigenvectors
• the eigenvectors of Pauli matrices

• the eigenvectors of Sθ
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commutation relations
• the products of Pauli matrices

• The commutators

• the anti-commutator 

σ a ,σ b[ ] = 2iεabcσ c

σ x
2 =σ y

2 =σ z
2 = 1

σ yσ z = −σ zσ y = iσ x

σ xσ y = −σ yσ x =
0 1
1 0
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S2

• The length of spin vector

• S2 is the identity operator multiplied by a 
constant. Any spin state has a definite S2 
value 

 
S2 = Sx

2 + Sy
2 + Sz

2 = 
2

4
σ x
2 +σ y

2 +σ z
2( ) = 3

2

4

S2,Si⎡⎣ ⎤⎦ = 0



spin filters

• Sz and Sx are complementary quantities
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Fig. 2.11 A Stern–Gerlach apparatus.

A very simple sort of observation would be to block one of the two beams, say the one
corresponding to Sz = −!/2. The value of Sz is registered by whether or not the atom hits
the barrier. This arrangement is not simply a measurement of Sz, but also an Sz filter. Atoms
with Sz = +!/2 are permitted to pass, but other atoms are stopped.

If we prepare a particle in the state |z−〉 and send it through our apparatus, then it is
blocked. If we prepare it in |z+〉, then it will certainly pass through the apparatus. What will
be its state afterwards? This will in general depend on the detailed physics of the apparatus,
since magnetic fields and so forth might produce changes in the spin of the particle. For
now we will consider the simplest case, in which the spin is unchanged: the particle will
emerge with spin state |z+〉.

Now suppose we introduce a particle in the state |x+〉, given in Eq. 2.41. Such a particle
will have a probability 1/2 of being blocked and probability 1/2 of passing through the
apparatus. If the particle passes through, what will be its state afterwards?

We might be tempted to say that the spin will still be |x+〉, since we have said that the spin
is “unchanged” by the apparatus. But |x+〉 is a superposition of |z+〉 and |z−〉 – in essence,
an interference of these two states – and that interference cannot survive a measurement of
Sz. We conclude instead that the final state of the spin, given that it passes through our Sz
filter, is just |z+〉.

This means that a second measurement of Sz would produce exactly the same result as
the first measurement.8 To put it a different way, consider two Sz filters in succession. The
first one passes Sz = +!/2 and the second one passes Sz = −!/2, as shown in Fig. 2.12.
Any particle that passes the first filter is then in a state |z+〉, and so has probability zero for
passing the second filter.

Naively, we might think that a filter merely removes particles which do not meet some
specified criterion. If this were an adequate picture of how our filters work, then it would
follow that adding additional filters to a series could never increase the likelihood that a
particle would pass all the way through. This is indeed true if we add filters to the end of
the series. But what if we insert one in the middle?

Let us modify the arrangement in Fig. 2.12 by inserting an Sx filter between the two Sz
filters. This is shown in Fig. 2.13. A particle that passes through the first filter will then
be in a state |z+〉. In this state, it will pass the second filter with probability 1/2, and if it
does, it will afterwards have a spin state |x+〉. But a particle with this state will have some
chance (again, probability 1/2) of passing the final filter and ending up in the state |z−〉. By

8 This observation, that successive measurements of the same observable quantity will yield identical results, is
sometimes elevated to an axiom of quantum theory. However, as we will see in Section 4.3, this is only true in
the most ideal cases, and is not a general fact about actual measurement procedures.
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Fig. 2.12 Successive Stern–Gerlach filters for opposite values of Sz. The probability of passing through both
filters is zero.

Fig. 2.13 If we insert an Sx filter between two opposite Sz filters, we can increase the probability of passing
the whole series.

inserting an extra filter, we have increased the probability that the particle passes the whole
series.9

Therefore, the filters, and the measurements they are based on, do more than just “read
off” the value of some variable. They also have an effect on the state of the system that is
being observed. A particle prepared with spin state |z+〉 and subjected to a measurement of
Sx, will afterwards be found in one of the states |x±〉. The particle will retain no “memory”
of its previous commitment to a definite value of Sz.

This is because Sz and Sx are complementary quantities. We must orient our Stern–Gerlach
magnets one way or the other, choosing one spin measurement or the other. Measuring Sx
precludes measuring Sz, and furthermore, any definite value of Sz the particle might have
carried is destroyed by the measurement of Sx.

Exercise 2.24 Suppose the particle starts out with a spin state of |x−〉. What is the
probability that it will pass through all three filters in Fig. 2.13?

This has an interesting implication for the storage and retrieval of information using
quantum systems. Imagine representing one bit of information by the state of a spin-1/2
particle. A simple code would be

Signal Message
|z+〉 0
|z−〉 1.

When we wish to retrieve the information, all we need to do is measure Sz for the particle.
However, suppose we measure Sx instead? The result of this measurement would tell
us nothing at all about the bit encoded in the spin. Worse, once we have measured Sx,

9 This is quite similar to a simple lecture demonstration involving polarizing filters. Polarization is a property of
photons that is exactly analogous to particle spin. A polarizing filter blocks light of one polarization, but permits
light of the other (perpendicular) polarization to pass. No light can get through a pair of “crossed” polarizing
filters. But if a third tilted filter is introduced between the pair, some of the photons do pass through.
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Energy levels and quantum states

• An atom generally has many different energy 
levels. In many experiments only two energy 
levels – usually the ground state and one 
excited state – play any significant role. In 
this case, we can adopt a simplified model, 
the two-level atom,37 Two-level atoms

Fig. 2.14 On the left is the energy level “ladder” for an imaginary atom with six energy levels included. The
jump (a) is accompanied by the emission of a photon with energy E4 − E1, while the transition
shown in (b) absorbs a photon having much lower energy E3 − E2. On the right, the much simpler
ladder of a two-level atom.

〈E0 |E0 〉 = 〈E1 |E1 〉 = 1,

〈E0 |E1 〉 = 0. (2.47)

The principle of superposition tells us that there are other states as well formed by complex
linear combinations of these two. In general, then, the atom will be in a state

|ψ〉 = α0 |E0〉 + α1 |E1〉 . (2.48)

The amplitudes αk = 〈Ek |ψ 〉. If the atom is in the state |ψ〉, then a measurement of its
energy E will yield E0 with probability |α0|2 and E1 with probability |α1|2.

Exercise 2.25 Show that any state of the form eiφ |Ek〉 is a state with definite energy Ek .

The early quantum physicists thought that an atom must always be “in” one or another
of its energy levels, and even today physicists, chemists, and others will often speak and
write in this way. (To see an example, go back a few paragraphs and re-read our description
of an atom “jumping” from one rung of the energy level ladder to another.) But it is not so!
Superpositions such as Eq. 2.48 are perfectly possible quantum states, which means that
we can have interference effects between different energy levels. We will have more to say
on this point a little later. For now, we need to explain why this important fact can so often
be ignored.

The superposition of energy levels in Eq. 2.48, with its potential for interference between
the levels, only makes sense provided that the two-level atom remains informationally
isolated. But if the atom emits a photon (with energy E1 − E0) then it has announced to
the world that its energy was E1 and has now become E0. Since the surroundings contain a
record (in the form of the photon) of the atom’s energy E, the superposition can no longer
apply. The same would be true if the atom absorbed a photon from its surroundings.

E0

E1



Time evolution
• In general, then, the atom will be in a state

• at t = 0 the state is |ψ(0)⟩ = |Ek⟩, then at a 
later time 

• probability Pu at time t 

ψ =α E0 + β E1

ψ t( ) = e− iω kt Ek  Ek = ω k

Pu t( ) = u ψ t( ) 2
= u ψ t( ) 2

= Pu stationary states



time evolution

• the relative phases of the two terms will change

• As time progresses, the probability Pu(t) of the 
measurement outcome u changes from 1 to 0 
and then back to 1 again with an angular 
frequency 

ψ =α E0 + β E1 ψ t( ) =αe− iω0t E0 + βe− iω1t E1

ψ 0( ) = u = 1
2
E0 + 1

2
E1 ψ t( ) = 1

2
e− iω0t E0 + 1

2
e− iω1t E1

u ψ t( ) = 1
2
e− iω0t + e− iω1t( )

Pu t( ) = u ψ t( ) 2
= 1
4
e− iω0t + e− iω1t

2
= 1
2
1+ cosΔω 0t( )

Δω =ω1 −ω 0



• Precession of muon spin PRD73, 
072003(2006)

• Neutrino oscillation PRL100, 221803 
(2008)



time evolution 
operator

•                        for an energy level state |Ek⟩

• U(t) acts on states in a linear way

• The product of time evolution operators

U t( ) Ek = e− iω kt Ek

U t( )ψ 0( ) = ψ t( )

U t2( ) =U t2 − t1( )U t1( )



Hamiltonian operator
• H|Ek⟩ = Ek |Ek⟩ for an energy level state |Ek⟩

•  H acts on states in a linear way.

• Schrödinger equation

 
i d
dt

ψ t( ) =αE0e
− iω0t E0 + βE1e

− iω1t E1 = H ψ t( )

ψ t( ) =αe− iω0t E0 + βe− iω1t E1

 
i d
dt

ψ t( ) = H ψ t( )



 intrinsic magnetic moment

• electron has an intrinsic magnetic dipole 
moment by virtue of its spin

• gyromagnetic ratio, g=2

• Hamiltonian

M = − eg
2me

S

 
H = −M ⋅B = eg

4me

σ ⋅B

B
S

M
ground state



Schrodinger equation

• Schrodinger equation

• If B in z-direction

• the spinor state

• for the energy eigenstate

 
i dψ
dt

= Hψ = eg
4me

σ ⋅Bψ

ψ t( ) =
α+ t( )
α− t( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ψ t( ) = e− iωt α+

α−

⎛
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⎜⎜

⎞

⎠
⎟⎟

 
i dψ
dt

= eg
4me

σ zψ



eigenstate

• eigen equation

• eigenstates

• general solution

eg
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0 −1

⎛
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= ±ω 0
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0
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⎞
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ψ t( ) = ae− iω0tφ+ + be
iω0tφ− =

ae− iω0t

beiω0t
⎛

⎝
⎜

⎞

⎠
⎟



spin precession

• Set initial state to be in x-direction

• for arbitrary time

• The expectation value 

0 e− iφ

eiφ 0

⎛

⎝
⎜

⎞

⎠
⎟

φ = 0

u+ = 1
2

e
− iφ
2

e
iφ
2

⎛
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⎜
⎜
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⎠

⎟
⎟
⎟

ψ 0( ) = 1
2

1
1

⎛
⎝⎜

⎞
⎠⎟

ψ t( ) = 1
2

e− iω0t

eiω0t
⎛

⎝
⎜

⎞

⎠
⎟

 
Sx = 1

2

2

eiω0t e− iω0t( ) 0 1
1 0

⎛
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eiω0t
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⎜
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⎠
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4
e2iω0t + e−2iω0t( ) = cos2ω 0t
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spin precession

• The spin precession frequency,             
called Larmor frequency

• For B=1T, ωc ~ 0.9 x 1011 rad/s

Ω = 2ω 0 =
egB
2me

= gω c

B

t=0



Paramagnetic resonance

• The magnetic field has a small oscillating 
part

• solve the Schrodinger equation

• When B1=0

B = B0 ẑ + B1 cosωtx̂

ψ =
a t( )
b t( )

⎛
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⎜
⎜
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⎠
⎟
⎟

i d
dt

a t( )
b t( )
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Paramagnetic resonance
• When B1 <> 0, the solution

• Slowly varying functions A and B

• Consider how A and B evolve with time

ψ ≈ψ 0

a t( )eiω0t = A t( )
b t( )e− iω0t = B t( )

i dA t( )
dt

= i da t( )
dt

eiω0t −ω 0a t( )eiω0t =ω 0a t( )eiω0t +ω1b t( )cos ωt( )eiω0t −ω 0A t( )

=ω1b t( )cos ωt( )eiω0t =ω1B t( )cos ωt( )e2iω0t = 1
2
ω1B t( ) e2iω0t+iωt + e2iω0t−iωt( )

i dB t( )
dt

= 1
2
ω1A t( ) e−2iω0t+iωt + e−2iω0t−iωt( ) ω1 =

egB1
4me



Rotating wave approximation

• When the driving frequency is close 
resonance that

• There are rapid oscillating and slow 
oscillating terms

• The rotating wave approximation states 
that only slow oscillating term is important

 
e±2iω0t+iωt + e±2iω0t−iωt( )  e± 2iω0t−iωt( )

ω ≈ 2ω 0



Rabi oscillation
• To solve the coupled equation

• The solution is Rabi frequency

i dA t( )
dt

≈ 1
2
ω1B t( )e2iω0t−iωt i dB t( )

dt
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dt 2
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State evolution

• General solution

• Suppose t=0

• The coefficients 

A t( ) = A+e
iΩ+t + A−e

iΩ−t

B t( ) = e−2iω0t+iωt 2i
ω1

dA t( )
dt

= − 2
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b 0( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1

0
⎛
⎝⎜

⎞
⎠⎟

A 0( ) = a 0( ) = 1
B 0( ) = b 0( ) = 0

A+ + A− = 1
A+Ω+ + A−Ω− = 0

A+ =
Ω−

Ω− −Ω+

A− = − Ω+

Ω− −Ω+



state evolution

• The probability to find the spin pointing in   
-z direction is

P− t( ) = b t( ) 2 = B t( ) 2 = 2
ω1

⎛
⎝⎜

⎞
⎠⎟

2

A+Ω+e
− iΩ−t + A−Ω−e

− iΩ+t
2

= 2
ω1

⎛
⎝⎜

⎞
⎠⎟

2
Ω−Ω+

Ω− −Ω+

⎛
⎝⎜

⎞
⎠⎟

2

e− iΩ−t − e− iΩ+t
2

= 2 2
ω1

⎛
⎝⎜

⎞
⎠⎟

2
Ω−Ω+

Ω− −Ω+

⎛
⎝⎜

⎞
⎠⎟

2

1− cos Ω− −Ω+( )t⎡⎣ ⎤⎦

= 1
2

ω1
2

2ω 0 −ω( )2 +ω1
2
1− cos 2ω 0 −ω( )2 +ω1

2 t⎡
⎣⎢

⎤
⎦⎥

Ω+Ω− = − ω1

2
⎛
⎝⎜

⎞
⎠⎟
2

Ω+ +Ω− = 2ω 0 −ω

Ω+ −Ω− = 2ω 0 −ω( )2 +ω1
2



resonance condition

• when

• The down-spin probability 

• For nuclear spin

Ω = ±ω1

2
ω = 2ω 0

P− t( ) = 1
2
1− cosω1t( )

ω1 =
egB1
4mn



nuclear spin resonance

• a proton has a gyromagnetic ratio            
γp = 2.675 × 108 s−1T−1

• Larmor frequency at B=10T

Ω = γ pB =  2.675 ×  109  s−1

frequency =425.7 MHz



Nuclear magnetic 
resonance

900MHz, B=21.1 T



Addition of two spins

• The 2 spin system

• electron 1

• electron 2 

 
S1x ,S1y⎡⎣ ⎤⎦ = iS1z

 
S2x ,S2y⎡⎣ ⎤⎦ = iS2z

S1i ,S2 j⎡⎣ ⎤⎦ = 0      for  all i, j



Total spin
• Total spin

• commutation relation

• Therefor it is easy to find total spin S 
satisfies the commutation relation of an 
angular momentum

S = S1 + S2

 

Sx ,Sy⎡⎣ ⎤⎦ = S1x + S2x ,S1y + S2y⎡⎣ ⎤⎦
= S1x ,S1y⎡⎣ ⎤⎦ + S2x ,S2y⎡⎣ ⎤⎦
= iS1z + iS2z
= iSz



Eigenvalues

• Consider the states using single spinors

• electron 1

• electron 2

χ±
1( )

χ±
2( )

 
S1
2χ±

1( ) = 1
2
1
2
+1⎛

⎝⎜
⎞
⎠⎟ 

2χ±
1( )

 
S2
2χ±

2( ) = 1
2
1
2
+1⎛

⎝⎜
⎞
⎠⎟ 

2χ±
2( )

 
S1zχ±

1( ) = ± 1
2
χ±

1( )

 
S2zχ±

2( ) = ± 1
2
χ±

2( )



product states

• The possible states are (product states)

• calculate the eigenvalues

• Two m=0 states

χ+
1( )χ+

2( ) χ+
1( )χ−

2( ) χ−
1( )χ+

2( ) χ−
1( )χ−

2( )

 

Szχ+
1( )χ+

2( ) = S1z + S2z( )χ+
1( )χ+

2( )

= S1zχ+
1( )( )χ+

2( ) + χ+
1( ) S2zχ+

2( )( )
= χ+

1( )χ+
2( )

Szχ+
1( )χ−

2( ) = Szχ−
1( )χ+

2( ) = 0  Szχ−
1( )χ−

2( ) = −χ−
1( )χ−

2( )



spin triplet and singlet
• Spin triplet  S=1, m=1, 0, -1

• Spin singlet S=0, m=0

• May check using lowering operator

• S=1, m=0 state 

S− = S1− + S2−

 

S1−χ+
1( ) = χ−

1( )

S2−χ+
2( ) = χ−

2( )
 

S−χ+
1( )χ+

2( ) = S1−χ+
1( )( )χ+

2( ) + χ+
1( ) S2−χ+

2( )( )
=  χ−

1( )χ+
2( ) + χ+

1( )χ−
2( )( )

X+ =
1
2

χ−
1( )χ+

2( ) + χ+
1( )χ−

2( )( )



spin triplet and singlet

• One may check the result again

• The remaining state m=0 
 

S−
χ−
1( )χ+

2( ) + χ+
1( )χ−

2( )

2
= S1− + S2−( ) χ−

1( )χ+
2( ) + χ+

1( )χ−
2( )

2

= 1
2
S1−χ+

1( )( )χ−
2( ) + 1

2
χ−
1( ) S2−χ+

2( )( )
= 2χ−

1( )χ−
2( )

X− =
1
2

χ−
1( )χ+

2( ) − χ+
1( )χ−

2( )( )



S2

• check the S2 value S2 = S1 + S2( )2 = S12 + S22 + 2S1 ⋅S2
= S1

2 + S2
2 + 2S1xS2x + 2S1yS2y + 2S1zS2z

= S1
2 + S2

2 + S1+S2− + S1−S2+ + 2S1zS2z

 

S1
2X+ =

1
2
S1
2 χ−

1( )χ+
2( ) + χ+

1( )χ−
2( )( )

= 3
4
2

1
2

χ−
1( )χ+

2( ) + χ+
1( )χ−

2( )( ) = 34 
2X+

 
S2
2X+ =

3
4
2X+

 

S1zS2zX+ =
1
2
S1zS2z χ−

1( )χ+
2( ) + χ+

1( )χ−
2( )( )

= 1
2
S1zχ−

1( )S2zχ+
2( ) + 1

2
S1zχ+

1( )S2zχ−
2( )

= − 1
4
2

1
2

χ−
1( )χ+

2( ) + χ+
1( )χ−

2( )( ) = − 1
4
2X+

 
S1zS2zX− = − 1

4
2X−

 

S1
2X− =

3
4
2X−

S2
2X− =

3
4
2X−



S2

 

S1+S2− + S1−S2+( )X+ =
1
2
S1+S2− + S1−S2+( ) χ−

1( )χ+
2( ) + χ+

1( )χ−
2( )( )

= 1
2
S1+χ−

1( )( ) S2−χ+
2( )( ) + 1

2
S1−χ+

1( )( ) S2+χ−
2( )( )

= 1
2
2 χ+

1( )χ−
2( ) + χ−

1( )χ+
2( )( ) = 2X+

 

S1+S2− + S1−S2+( )X− =
1
2
S1+S2− + S1−S2+( ) χ−

1( )χ+
2( ) − χ+

1( )χ−
2( )( )

= 1
2
S1+χ−

1( )( ) S2−χ+
2( )( )− 1

2
S1−χ+

1( )( ) S2+χ−
2( )( )

= − 1
2
2 χ+

1( )χ−
2( ) − χ−

1( )χ+
2( )( ) = −2X−



S2

• For X+ , S=1

• For X- , S=0

 

S2X+ = S1
2X+ + S2

2X+ + S1+S2−X+ + S1−S2+X+ + 2S1zS2zX+

= 3
4
2X+ +

3
4
2X+ + 

2X+ −
1
2
2X+

= 22X+ = S S +1( )2X+

 

S2X− = S1
2X− + S2

2X− + S1+S2−X− + S1−S2+X− + 2S1zS2zX−

= 3
4
2X− +

3
4
2X− − 

2X− −
1
2
2X−

= 0



representation

• product 
states

χ+
1( )χ+

2( )

χ+
1( )χ−

2( )

χ−
1( )χ+

2( )

χ−
1( )χ−

2( )

• total spin 
state

Spin triplet  

S=1

Spin singlet 

S=0

1
2

χ−
1( )χ+

2( ) − χ+
1( )χ−

2( )( )
χ+
1( )χ+

2( )

χ−
1( )χ−

2( )

1
2

χ−
1( )χ+

2( ) + χ+
1( )χ−

2( )( )



spin-dependent potential

• In many physical systems, two particle 
interaction is spin-dependent

• the duetron hamiltonian

• S2 is a good quantum number, but Sz is not

• for triplet

• for singlet

 
H = p1

2

2m1

+ p2
2

2m2

+V1 r( ) + 1
2
S1 ⋅S2V2 r( )

 
S1 ⋅S2 =

1
2
S2 − S1

2 − S2
2( ) = 12 S

2 − 3
4
2

V r( ) =V1 r( ) + 1− 3
4

⎛
⎝⎜

⎞
⎠⎟V2 r( ) =V1 r( ) + 1

4
V2 r( )

V r( ) =V1 r( ) + 0 − 3
4

⎛
⎝⎜

⎞
⎠⎟V2 r( ) =V1 r( )− 3

4
V2 r( )

n p



spin-dependent potential

• for deutron, one observes a bound S=1 
state and an unbound S=0 state

• for BCS paring, bound state S=0 

http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/coop.html



spin singlet and 
entanglement

• In the spin singlet, quantum states are 
entangled

• First we do Sx measurement on electron 1, 
we have 50% to get `+’ and 50% to get `-’

• then we do Sx measurement on electron 2, 
the result is 100% opposite to the result of 
electron 1.



How does it work?

• entangled state

• the measurement of Sx1 project the state to 
an eigenstate of Sx1

• The project operator

ψ = 1
2

1
0

⎛
⎝⎜

⎞
⎠⎟ 1

0
1

⎛
⎝⎜

⎞
⎠⎟ 2

− 0
1

⎛
⎝⎜

⎞
⎠⎟ 1

1
0

⎛
⎝⎜

⎞
⎠⎟ 2

⎛

⎝
⎜

⎞

⎠
⎟

P1 +( ) = Sx = + Sx = +

= 1
2

1 1( ) 12
1
1

⎛
⎝⎜

⎞
⎠⎟

= 1
2

1 1
1 1

⎛
⎝⎜

⎞
⎠⎟

Sx1 =
1
2

0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

Sx = + = 1
2

1
1

⎛
⎝⎜

⎞
⎠⎟



measurement
• Projection result

• The following measurement on Sx2 will only 
give `-’ result

P1 +( )ψ = 1
2
1
2

1 1
1 1

⎛
⎝⎜

⎞
⎠⎟

1
0

⎛
⎝⎜

⎞
⎠⎟ 1

0
1

⎛
⎝⎜

⎞
⎠⎟ 2

− 1
2
1
2

1 1
1 1

⎛
⎝⎜

⎞
⎠⎟

0
1

⎛
⎝⎜

⎞
⎠⎟ 1

1
0

⎛
⎝⎜

⎞
⎠⎟ 2

= 1
2 2

1
1

⎛
⎝⎜

⎞
⎠⎟ 1

0
1

⎛
⎝⎜

⎞
⎠⎟ 2

− 1
2 2

1
1

⎛
⎝⎜

⎞
⎠⎟ 1

1
0

⎛
⎝⎜

⎞
⎠⎟ 2

= 1
2
1
2

1
1

⎛
⎝⎜

⎞
⎠⎟ 1

1
2

−1
1

⎛
⎝⎜

⎞
⎠⎟ 2

= ′ψ

 
Sx2 ′ψ = Sx2P1 +( )ψ = − 

2
′ψ



Ψ
Sx1

P1 +( )ψ

P1 −( )ψ

Sx1=+

Sx1=-

Sx2

Sx2

Sx2=-

Sx2=+

50%

50%

P1 +( )ψ

P1 −( )ψ

singlet

1
2
1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
1

− 1
2
1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
2

1
2

− 1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
1

1
2
1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
2



• Einstein’s comment: “spukhafte 
Fernwirkung” or "spooky action at a 
distance



Addition of L and S

• total angular momentum

• product state

• eigenstate

• eigenvalue

J = L+ S

Ylmχ±

 
J2ψ j ,mj

= 2 j j +1( )ψ j ,mj

 
Jzψ j ,mj

= mjψ j ,mj

j = l ± 1
2

 mj = − j,− j +1, j −1, j



Addition of L and S

• case 1

• case 2

ψ j ,mj
= l +m +1

2l +1
Ylmχ+ +

l −m
2l +1

Ylm+1χ−

j = l + 1
2

mj = m + 1
2

ψ j ,mj
= l −m

2l +1
Ylmχ+ +

l +m +1
2l +1

Ylm+1χ−

j = l − 1
2

mj = m + 1
2



Addition of angular 
momenta

• possible total angular momentum

• possible z-component

J = L1 +L2

 j = l1 + l2,l1 + l2 −1, l1 − l2

 mj = − j,− j +1, j −1, j


