Spin

spin I/2 system

- A particle may have an intrinsic angular momentum called spin
- Electrons, protons, and neutrons are all examples of spin-I/2 particles
- If one measure the z-component $\mathrm{S}_{\mathrm{z}}\left(\right.$ or S_{x}, S_{y}) of the spin angular momentum for one of these particles, he gets

$$
S_{z}= \pm \frac{\hbar}{2}
$$

Stern-Gerlach experiment

- A stream of atoms moving from the right passes between the asymmetric poles of a magnet. Particles with different values of μ_{z} are deflected in different directions. The final position of the atom determines its μ_{z}

$$
\vec{\mu}=\gamma \vec{S} \quad \gamma \text { is gyromagnetic ratio }
$$

the spin state

- superpositions of spin-up and spin-down states

$$
\begin{aligned}
& \left|z_{+}\right\rangle=\binom{1}{0} \quad\left|z_{-}\right\rangle=\binom{0}{1} \\
& \binom{\alpha}{\beta}=\alpha\left|z_{+}\right\rangle+\beta\left|z_{-}\right\rangle
\end{aligned}
$$

Bloch sphere

$$
\begin{aligned}
& \left|x_{+}\right\rangle=\frac{1}{\sqrt{2}}\left|z_{+}\right\rangle+\frac{1}{\sqrt{2}}\left|z_{-}\right\rangle \\
& \left|x_{-}\right\rangle=\frac{1}{\sqrt{2}}\left|z_{+}\right\rangle-\frac{1}{\sqrt{2}}\left|z_{-}\right\rangle
\end{aligned}
$$

why?
$\left\langle x_{-} \mid x_{+}\right\rangle=0$

$$
\left|\left\langle z_{+} \mid x_{+}\right\rangle\right|^{2}=\left|\left\langle z_{-} \mid x_{+}\right\rangle\right|^{2}=\frac{1}{2}
$$

$$
\begin{aligned}
& \left|y_{+}\right\rangle=\frac{1}{\sqrt{2}}\left|z_{+}\right\rangle+\frac{i}{\sqrt{2}}\left|z_{-}\right\rangle \\
& \left|y_{-}\right\rangle=\frac{1}{\sqrt{2}}\left|z_{+}\right\rangle-\frac{i}{\sqrt{2}}\left|z_{-}\right\rangle
\end{aligned}
$$

change of basis

- Suppose we choose a direction in the xzplane that is inclined at an angle θ from the z-axis. Then the amplitude vectors

$$
\begin{aligned}
& \left|\theta_{+}\right\rangle=\cos \frac{\theta}{2}\left|z_{+}\right\rangle+\sin \frac{\theta}{2}\left|z_{-}\right\rangle \\
& \left|\theta_{-}\right\rangle=\sin \frac{\theta}{2}\left|z_{+}\right\rangle-\cos \frac{\theta}{2}\left|z_{-}\right\rangle
\end{aligned}
$$

Pauli operators

- Hermitian operators in 2 level systems

$$
\begin{gathered}
1=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)=|0\rangle\langle 0|+|1\rangle\langle 1| \\
\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=|0\rangle\langle 0|-|1\rangle\langle 1| \\
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)=|0\rangle\langle 1|+|0\rangle\langle 1| \\
\sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=-i|0\rangle\langle 1|+i|0\rangle\langle 1| \\
S_{\theta}=\frac{\hbar}{2}\left(\cos \theta \sigma_{z}+\sin \theta \sigma_{x}\right)=\frac{\hbar}{2}\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
\end{gathered}
$$

Projection operator

- the projection to $+x$ and $-x$ direction

$$
\begin{array}{rlr}
\left|x_{+}\right\rangle\left\langle x_{+}\right| & =\left(\frac{1}{\sqrt{2}}\left|z_{+}\right\rangle+\frac{1}{\sqrt{2}}\left|z_{-}\right\rangle\right)\left(\frac{1}{\sqrt{2}}\left\langle z_{+}\right|+\frac{1}{\sqrt{2}}\left\langle z_{-}\right|\right) & \\
& =\frac{1}{2}\left(\left|z_{+}\right\rangle\left\langle z_{+}\right|+\left|z_{-}\right\rangle\left\langle z_{-}\right|+\left|z_{+}\right\rangle\left\langle x_{+}\right|=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right)\right. \\
\left|x_{-}\right\rangle\left\langle z_{-}\right\rangle\left\langle z_{-}\right| & =\left(\frac{1}{\sqrt{2}}\left|z_{+}\right\rangle-\frac{1}{\sqrt{2}}\left|z_{-}\right\rangle\right)\left(\frac{1}{\sqrt{2}}\left\langle z_{+}\right|-\frac{1}{\sqrt{2}}\left\langle z_{-}\right|\right) & \left|x_{-}\right\rangle\left\langle x_{-}\right|=\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right. \\
& =\frac{1}{2}\left(\left|z_{+}\right\rangle\left\langle z_{+}\right|+\left|z_{-}\right\rangle\left\langle z_{-}\right|-\left|z_{+}\right\rangle\left\langle z_{-}\right|-\left|z_{-}\right\rangle\left\langle z_{+}\right|\right) & \\
& P_{x \pm}^{2}=P_{x \pm}
\end{array}
$$

$$
S_{x}=\frac{\hbar}{2} \sigma_{x}=\frac{\hbar}{2}\left(\left|x_{+}\right\rangle\left\langle x_{+}\right|-\left|x_{-}\right\rangle\left\langle x_{-}\right|\right)=\frac{\hbar}{2}\left(\left|z_{+}\right\rangle\left\langle z_{-}\right|+\left|z_{-}\right\rangle\left\langle z_{+}\right|\right)
$$

$$
\left\langle S_{x}\right\rangle=\frac{\hbar}{2}\langle\psi| \sigma_{x}|\psi\rangle
$$

eigenvectors

- the eigenvectors of Pauli matrices

$$
\begin{aligned}
& \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \lambda^{2}-1=0 \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\alpha}{\beta}= \pm\binom{\alpha}{\beta} \quad \alpha= \pm 1 \\
&
\end{aligned}
$$

- the eigenvectors of S_{θ}

$$
\begin{aligned}
& S_{\theta}=\frac{\hbar}{2}\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right) \quad \lambda^{2}-\cos ^{2} \theta-\sin ^{2} \theta=0 \quad \lambda= \pm 1 \\
& \left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)\binom{\alpha}{\beta}= \pm\binom{\alpha}{\beta} \quad\left|\theta_{+}\right\rangle=\binom{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}} \quad\left|\theta_{-}\right\rangle=\binom{\sin \frac{\theta}{2}}{-\cos \frac{\theta}{2}}
\end{aligned}
$$

commutation relations

- the products of Pauli matrices

$$
\sigma_{x}^{2}=\sigma_{y}^{2}=\sigma_{z}^{2}=1
$$

$$
\begin{aligned}
& \sigma_{x} \sigma_{y}=-\sigma_{y} \sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)=i \sigma_{z} \\
& \sigma_{y} \sigma_{z}=-\sigma_{z} \sigma_{y}=i \sigma_{x} \quad \quad \sigma_{z} \sigma_{x}=-\sigma_{x} \sigma_{z}=i \sigma_{y}
\end{aligned}
$$

- The commutators

$$
\left[\sigma_{a}, \sigma_{b}\right]=2 i \varepsilon_{\text {abo }} \sigma_{c} \quad\left[\sigma_{x}, \sigma_{y}\right]=2 i \sigma_{z}
$$

- the anti-commutator

$$
\left\{\sigma_{a}, \sigma_{b}\right\}=2 \delta_{a b}
$$

S^{2}

- The length of spin vector

$$
S^{2}=S_{x}^{2}+S_{y}^{2}+S_{z}^{2}=\frac{\hbar^{2}}{4}\left(\sigma_{x}^{2}+\sigma_{y}^{2}+\sigma_{z}^{2}\right)=\frac{3 \hbar^{2}}{4}
$$

- S^{2} is the identity operator multiplied by a constant. Any spin state has a definite S^{2} value

$$
\left[s^{2}, S_{i}\right]=0
$$

spin filters

Stern-Gerlach filters

- S_{z} and S_{x} are complementary quantities

Energy levels and quantum states

- An atom generally has many different energy levels. In many experiments only two energy levels - usually the ground state and one excited state - play any significant role. In this case, we can adopt a simplified model, the two-level atom,

Time evolution

- In general, then, the atom will be in a state

$$
|\psi\rangle=\alpha\left|E_{0}\right\rangle+\beta\left|E_{1}\right\rangle
$$

- at $\mathrm{t}=0$ the state is $|\Psi(0)\rangle=\left|\mathrm{E}_{\mathrm{k}}\right\rangle$, then at a later time

$$
|\psi(t)\rangle=e^{-i \omega_{k}}\left|E_{k}\right\rangle \quad E_{k}=\hbar \omega_{k}
$$

- probability P_{u} at time t

$$
P_{u}(t)=\left.|\langle u| \psi(t))\right|^{2}=|\langle u \mid \psi(t)\rangle|^{2}=P_{u} \quad \text { stationary states }
$$

time evolution

$$
|\psi\rangle=\alpha\left|E_{0}\right\rangle+\beta\left|E_{1}\right\rangle \quad|\psi(t)\rangle=\alpha e^{-i \omega_{0} t}\left|E_{0}\right\rangle+\beta e^{-i \omega_{1} t}\left|E_{1}\right\rangle
$$

- the relative phases of the two terms will change

$$
\begin{gathered}
|\psi(0)\rangle=|u\rangle=\frac{1}{\sqrt{2}}\left|E_{0}\right\rangle+\frac{1}{\sqrt{2}}\left|E_{1}\right\rangle \quad|\psi(t)\rangle=\frac{1}{\sqrt{2}} e^{-i \omega_{0} t}\left|E_{0}\right\rangle+\frac{1}{\sqrt{2}} e^{-i \omega_{1} t}\left|E_{1}\right\rangle \\
\langle u \mid \psi(t)\rangle=\frac{1}{2}\left(e^{-i \omega_{0} t}+e^{-i \omega_{1} t}\right) \\
P_{u}(t)=|\langle u \mid \psi(t)\rangle|^{2}=\frac{1}{4}\left|e^{-i \omega_{0} t}+e^{-i \omega_{1} t}\right|^{2}=\frac{1}{2}\left(1+\cos \Delta \omega_{0} t\right)
\end{gathered}
$$

- As time progresses, the probability $\mathrm{P}_{\mathrm{u}}(\mathrm{t})$ of the measurement outcome u changes from I to 0 and then back to I again with an angular frequency $\Delta \omega=\omega_{1}-\omega_{0}$
- Precession of muon spin PRD73, 072003(2006)

- Neutrino oscillation PRLI00, 22 I 803 (2008)

time evolution

operator

- $U(t)\left|E_{k}\right\rangle=e^{-i \omega_{k}}\left|E_{k}\right\rangle$ for an energy level state $\left|E_{k}\right\rangle$
- $\mathrm{U}(\mathrm{t})$ acts on states in a linear way

$$
U(t)|\psi(0)\rangle=|\psi(t)\rangle
$$

- The product of time evolution operators

$$
U\left(t_{2}\right)=U\left(t_{2}-t_{1}\right) U\left(t_{1}\right)
$$

Hamiltonian operator

- $H\left|E_{k}\right\rangle=E_{k}\left|E_{k}\right\rangle$ for an energy level state $\left|E_{k}\right\rangle$
- H acts on states in a linear way.

$$
\begin{gathered}
|\psi(t)\rangle=\alpha e^{-i \omega_{0} t}\left|E_{0}\right\rangle+\beta e^{-i \omega_{1} t}\left|E_{1}\right\rangle \\
i \hbar \frac{d}{d t}|\psi(t)\rangle=\alpha E_{0} e^{-i \omega_{0} t}\left|E_{0}\right\rangle+\beta E_{1} e^{-i \omega_{t} t}\left|E_{1}\right\rangle=H|\psi(t)\rangle
\end{gathered}
$$

- Schrödinger equation

$$
i \hbar \frac{d}{d t}|\psi(t)\rangle=H|\psi(t)\rangle
$$

intrinsic magnetic moment

- electron has an intrinsic magnetic dipole moment by virtue of its spin

$$
\mathbf{M}=-\frac{e g}{2 m_{e}} \mathbf{S}
$$

- gyromagnetic ratio, $g=2$
- Hamiltonian

$$
H=-\mathbf{M} \cdot \mathbf{B}=\frac{e g \hbar}{4 m_{e}} \sigma \cdot \mathbf{B}
$$

Schrodinger equation

- Schrodinger equation $i \hbar \frac{d \psi}{d t}=H \psi=\frac{e g \hbar}{4 m_{e}} \sigma \cdot \mathbf{B} \psi$
- If B in z-direction $i \hbar \frac{d \psi}{d t}=\frac{e g \hbar}{4 m_{e}} \sigma_{\tau} \psi$
- the spinor state $\quad \psi(t)=\binom{\alpha_{+}(t)}{\alpha_{-}(t)}$
- for the energy eigenstate $\psi(t)=e^{-i o t}\binom{\alpha_{+}}{\alpha_{-}}$

eigenstate

- eigen equation $\quad \frac{e g}{4 m_{e}}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{\alpha_{+}}{\alpha_{-}}=\omega\binom{\alpha_{+}}{\alpha_{-}}$
- eigenstates

$$
\begin{aligned}
& \phi_{+}=\binom{1}{0} \\
& \phi_{-}=\binom{0}{1}
\end{aligned}
$$

- general solution

$$
\psi(t)=a e^{-i \omega_{0} t} \phi_{+}+b e^{i \omega_{0} t} \phi_{-}=\binom{a e^{-i \omega_{0} t}}{b e^{i \omega_{0} t}}
$$

spin precession

$$
\left(\begin{array}{cc}
0 & e^{-i \phi} \\
e^{i \phi} & 0
\end{array}\right) \quad\left|u_{+}\right\rangle=\frac{1}{\sqrt{2}}\binom{e^{-i \frac{\phi}{2}}}{e^{i \frac{\phi}{2}}}
$$

- Set initial state to be in x-direction

$$
\phi=0 \quad \psi(0)=\frac{1}{\sqrt{2}}\binom{1}{1}
$$

- for arbitrary time

$$
\psi(t)=\frac{1}{\sqrt{2}}\binom{e^{-i \omega_{0} t}}{e^{i \omega_{0} t}}
$$

- The expectation value

$$
\left\langle S_{x}\right\rangle=\frac{1}{2} \frac{\hbar}{2}\left(\begin{array}{ll}
e^{i \omega_{0} t} & e^{-i \omega_{0} t}
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{e^{-i \omega_{0} t}}{e^{i \omega_{0} t}}=\frac{\hbar}{4}\left(e^{2 i \omega_{0} t}+e^{-2 i \omega_{0} t}\right)=\frac{\hbar \cos 2 \omega_{0} t}{2}
$$

spin precession

- The spin precession frequency, called Larmor frequency

$$
\Omega=2 \omega_{0}=\frac{e g B}{2 m_{e}}=g \omega_{c}
$$

- For $B=I T, \omega_{c} \sim 0.9 \times 10^{11} \mathrm{rad} / \mathrm{s}$

Paramagnetic resonance

- The magnetic field has a small oscillating part

$$
\mathbf{B}=B_{0} \hat{z}+B_{1} \cos \omega t \hat{x}
$$

- solve the Schrodinger equation

$$
\begin{aligned}
i \hbar \frac{d}{d t} \psi & =\frac{e g \hbar}{4 m_{e}}\left(\begin{array}{cc}
B_{0} & B_{1} \cos \omega t \\
B_{1} \cos \omega t & -B_{0}
\end{array}\right) \psi \quad \psi=\binom{a(t)}{b(t)} \\
i \frac{d}{d t}\binom{a(t)}{b(t)} & =\frac{e g}{4 m_{e}}\left(\begin{array}{cc}
B_{0} & B_{1} \cos \omega t \\
B_{1} \cos \omega t & -B_{0}
\end{array}\right)\binom{a(t)}{b(t)}
\end{aligned}
$$

- When $B_{1}=0$

$$
\psi_{0}=\binom{a(0) e^{-i \omega_{0} t}}{b(0) e^{i \omega_{0} t}}
$$

Paramagnetic resonance

- When $\mathrm{B}_{1}<>0$, the solution $\psi \approx \psi_{0}$
- Slowly varying functions A and B

$$
\begin{aligned}
& a(t) e^{i \omega_{0} t}=A(t) \\
& b(t) e^{-i \omega_{0} t}=B(t)
\end{aligned}
$$

- Consider how A and B evolve with time

$$
\begin{gathered}
i \frac{d A(t)}{d t}=i \frac{d a(t)}{d t} e^{i \omega_{0} t}-\omega_{0} a(t) e^{i \omega_{0} t}=\omega_{0} a(t) e^{i \omega_{0} t}+\omega_{1} b(t) \cos (\omega t) e^{i \omega_{0} t}-\omega_{0} A(t) \\
=\omega_{1} b(t) \cos (\omega t) e^{i \omega_{0} t}=\omega_{1} B(t) \cos (\omega t) e^{2 i \omega_{0} t}=\frac{1}{2} \omega_{1} B(t)\left(e^{2 i \omega_{0} t+i \omega t}+e^{2 i \omega_{0} t-i \omega t}\right) \\
i \frac{d B(t)}{d t}=\frac{1}{2} \omega_{1} A(t)\left(e^{-2 i \omega_{0} t+i \omega t}+e^{-2 i \omega_{0} t-i \omega t}\right) \quad \omega_{1}=\frac{e g B_{1}}{4 m_{e}}
\end{gathered}
$$

Rotating wave approximation

- When the driving frequency is close resonance that

$$
\omega \approx 2 \omega_{0}
$$

- There are rapid oscillating and slow oscillating terms
- The rotating wave approximation states that only slow oscillating term is important

$$
\left(e^{ \pm 2 i \omega_{0} t+i \omega t}+e^{ \pm 2 i \omega_{0} t-i \omega t}\right) \simeq e^{ \pm\left(2 i \omega_{0} t-i \omega t\right)}
$$

Rabi oscillation

- To solve the coupled equation

$$
\begin{aligned}
i \frac{d A(t)}{d t} & \approx \frac{1}{2} \omega_{1} B(t) e^{2 i \omega_{0} t-i \omega t} \quad \quad i \frac{d B(t)}{d t} \approx \frac{1}{2} \omega_{1} A(t) e^{-2 i \omega_{0} t i+i \omega t} \\
\frac{d^{2} A(t)}{d t^{2}} & \approx-\frac{i}{2} \omega_{1} e^{2 i \omega_{0} t-i \omega t} \frac{d B(t)}{d t}+\frac{1}{2} \omega_{1}\left(2 \omega_{0}-\omega\right) e^{2 i \omega_{0} t-i \omega t} B(t) \\
& =\left(\frac{\omega_{1}}{2}\right)^{2} A(t)+i\left(2 \omega_{0}-\omega\right) \frac{d A(t)}{d t}
\end{aligned}
$$

- The solution is Rabi frequency

$$
\begin{gathered}
A(t)=A(0) e^{i \Omega t} \quad-\Omega^{2}=\left(\frac{\omega_{1}}{2}\right)^{2}-\left(2 \omega_{0}-\omega\right) \Omega \\
\Omega=\left(\omega_{0}-\frac{\omega}{2}\right) \pm \sqrt{\left(\omega_{0}-\frac{\omega}{2}\right)^{2}+\left(\frac{\omega_{1}}{2}\right)^{2}}
\end{gathered}
$$

State evolution

- General solution $\quad A(t)=A_{+} e^{i \Omega_{t} t}+A_{-} e^{i \Omega, t}$

$$
\begin{aligned}
B(t) & =e^{-2 i \omega_{0}+t i o t} \frac{2 i}{\omega_{1}} \frac{d A(t)}{d t}=-\frac{2}{\omega_{1}} e^{-2 i \omega_{0}+i+i \omega t}\left(A_{+} \Omega_{+} e^{i \Omega_{4} t}+A_{-} \Omega_{-} e^{i \Omega_{t} t}\right) \\
& =-\frac{2}{\omega_{1}}\left(A_{+} \Omega_{+} e^{-i \Omega_{-} t}+A_{-} \Omega_{-} e^{-i \Omega_{4} t}\right)
\end{aligned}
$$

- Suppose t=0 $\quad \psi=\binom{a(0)}{b(0)}=\binom{1}{0}$
- The coefficients

$$
\begin{array}{ll}
A(0)=a(0)=1 & A_{+}+A_{-}=1 \\
B(0)=b(0)=0 & A_{+} \Omega_{+}+A_{-} \Omega_{-}=0
\end{array}
$$

$$
\begin{aligned}
& A_{+}=\frac{\Omega_{-}}{\Omega_{-}-\Omega_{+}} \\
& A_{-}=-\frac{\Omega_{+}}{\Omega_{-}-\Omega_{+}}
\end{aligned}
$$

state evolution

- The probability to find the spin pointing in -z direction is

$$
\begin{aligned}
& P_{-}(t)=|b(t)|^{2}=|B(t)|^{2}=\left(\frac{2}{\omega_{1}}\right)^{2}\left|A_{+} \Omega_{+} e^{-i \Omega_{-} t}+A_{-} \Omega_{-} e^{-i \Omega_{+}+}\right|^{2} \\
& =\left(\frac{2}{\omega_{1}}\right)^{2}\left(\frac{\Omega_{-} \Omega_{+}}{\Omega_{-}-\Omega_{+}}\right)^{2}\left|e^{-i \Omega_{-} t}-e^{-i \Omega_{+} t}\right|^{2} \\
& =2\left(\frac{2}{\omega_{1}}\right)^{2}\left(\frac{\Omega_{-} \Omega_{+}}{\Omega_{-}-\Omega_{+}}\right)^{2}\left[1-\cos \left(\Omega_{-}-\Omega_{+}\right) t\right]
\end{aligned} \begin{array}{ll}
2 & \Omega_{+}+\Omega_{-}=2 \omega_{0}-\omega \\
=\frac{1}{2} \frac{\omega_{1}}{\left(2 \omega_{0}-\omega\right)^{2}+\omega_{1}^{2}}\left[1-\cos \sqrt{\left(2 \omega_{0}-\omega\right)^{2}+\omega_{1}^{2}} t\right] & \Omega_{+}-\Omega_{-}=\sqrt{\left(2 \omega_{0}-\omega\right)^{2}+\omega_{1}^{2}}
\end{array}
$$

resonance condition

- when $\quad \omega=2 \omega_{0} \quad \Omega= \pm \frac{\omega_{1}}{2}$
- The down-spin probability $\quad P_{-}(t)=\frac{1}{2}\left(1-\cos \omega_{1} t\right)$
- For nuclear spin

$$
\omega_{1}=\frac{e g B_{1}}{4 m_{n}}
$$

nuclear spin resonance

- a proton has a gyromagnetic ratio $\gamma_{p}=2.675 \times 10^{8} \mathrm{~s}^{-1} \mathrm{~T}^{-1}$
- Larmor frequency at $B=10 T$

$$
\Omega=\gamma_{p} B=2.675 \times 10^{9} \mathrm{~s}^{-1}
$$

frequency $=425.7 \mathrm{MHz}$

Nuclear magnetic resonance

Particle	Spin	$W_{\text {Larmor }} / B$ $\mathrm{~s}^{-1} \mathrm{~T}^{-1}$	n / n
Electron	$1 / 2$	1.7608×10^{11}	$28.025 \mathrm{GHz} / \mathrm{T}$
Proton	$1 / 2$	2.6753×10^{8}	$42.5781 \mathrm{MHz} / \mathrm{T}$
Deuteron	1	0.4107×10^{8}	$6.5357 \mathrm{MHz} / \mathrm{T}$
Neutron	$1 / 2$	1.8326×10^{8}	$29.1667 \mathrm{MHz} / \mathrm{T}$
${ }^{23} \mathrm{Na}$	$3 / 2$	0.7076×10^{8}	$11.2618 \mathrm{MHz} / \mathrm{T}$
${ }^{31} \mathrm{P}$	$1 / 2$	1.0829×10^{8}	$17.2349 \mathrm{MHz} / \mathrm{T}$
${ }^{14} \mathrm{~N}$	1	0.1935×10^{8}	$3.08 \mathrm{MHz} / \mathrm{T}$
${ }^{13} \mathrm{C}$	$1 / 2$	0.6729×10^{8}	$10.71 \mathrm{MHz} / \mathrm{T}$
${ }^{19} \mathrm{~F}$	$1 / 2$	2.518×10^{8}	$40.08 \mathrm{MHz} / \mathrm{T}$

$900 \mathrm{MHz}, \mathrm{B}=21.1 \mathrm{~T}$

Addition of two spins

- The 2 spin system
- electron I

$$
\left[S_{1 x}, S_{1 y}\right]=i \hbar S_{12}
$$

- electron 2

$$
\left[S_{2 x}, S_{2 y}\right]=i \hbar S_{2 z}
$$

$$
\left[S_{1 i}, S_{2 j}\right]=0 \quad \text { for all } i, j
$$

Total spin

- Total spin

$$
\mathbf{S}=\mathbf{S}_{1}+\mathbf{S}_{2}
$$

- commutation relation

$$
\begin{aligned}
{\left[S_{x}, S_{y}\right] } & =\left[S_{1 x}+S_{2 x}, S_{1 y}+S_{2 y}\right] \\
& =\left[S_{1 x}, S_{1 y}\right]+\left[S_{2 x}, S_{2 y}\right] \\
& =i \hbar S_{1 z}+i \hbar S_{2 z} \\
& =i \hbar S_{z}
\end{aligned}
$$

- Therefor it is easy to find total spin S satisfies the commutation relation of an angular momentum

Eigenvalues

- Consider the states using single spinors
- electron I $x_{ \pm}^{(1)}$

$$
\begin{aligned}
& S_{1}^{2} \chi_{ \pm}^{(1)}=\frac{1}{2}\left(\frac{1}{2}+1\right) \hbar^{2} \chi_{ \pm}^{(1)} \\
& S_{1 z} \chi_{ \pm}^{(1)}= \pm \frac{1}{2} \hbar \chi_{ \pm}^{(1)}
\end{aligned}
$$

- electron $2 \chi_{ \pm}^{(2)}$

$$
\begin{aligned}
& S_{2}^{2} \chi_{ \pm}^{(2)}=\frac{1}{2}\left(\frac{1}{2}+1\right) \hbar^{2} \chi_{ \pm}^{(2)} \\
& S_{2 z} \chi_{ \pm}^{(2)}= \pm \frac{1}{2} \hbar \chi_{ \pm}^{(2)}
\end{aligned}
$$

product states

- The possible states are (product states)

$$
x_{+}^{(1)} \chi_{+}^{(2)} \quad x_{+}^{(1)} \chi_{-}^{(2)} \quad x_{-}^{(1)} \chi_{+}^{(2)} \quad x_{-}^{(1)} \chi_{-}^{(2)}
$$

- calculate the eigenvalues

$$
\begin{aligned}
& S_{z} \chi_{+}^{(1)} \chi_{+}^{(2)}=\left(S_{1 z}+S_{2 z}\right) \chi_{+}^{(1)} \chi_{+}^{(2)} \\
&=\left(S_{1 z} \chi_{+}^{(1)}\right) \chi_{+}^{(2)}+\chi_{+}^{(1)}\left(S_{2 z} \chi_{+}^{(2)}\right) \\
&=\hbar \chi_{+}^{(1)} \chi_{+}^{(2)} \\
& S_{z} \chi_{+}^{(1)} \chi_{-}^{(2)}=S_{z} \chi_{-}^{(1)} \chi_{+}^{(2)}=0 \quad S_{z} \chi_{-}^{(1)} \chi_{-}^{(2)}=-\hbar \chi_{-}^{(1)} \chi_{-}^{(2)}
\end{aligned}
$$

- Two $m=0$ states

spin triplet and singlet

- Spin triplet $S=I, m=I, 0,-I$
- Spin singlet $S=0, m=0$
- May check using lowering operator $S_{-}=S_{1-}+S_{2-}$

$$
\begin{aligned}
& S_{1-} \chi_{+}^{(1)}=\hbar \chi_{-}^{(1)} \\
& S_{2} \chi_{+}^{(2)}=\hbar \chi_{-}^{(2)}
\end{aligned}
$$

$$
\begin{aligned}
S_{-} \chi_{+}^{(1)} \chi_{+}^{(2)} & =\left(S_{1-} \chi_{+}^{(1)}\right) \chi_{+}^{(2)}+\chi_{+}^{(1)}\left(S_{2-} \chi_{+}^{(2)}\right) \\
& =\hbar\left(\chi_{-}^{(1)} \chi_{+}^{(2)}+\chi_{+}^{(1)} \chi_{-}^{(2)}\right)
\end{aligned}
$$

- $\mathrm{S}=\mathrm{I}, \mathrm{m}=0$ state $\quad X_{+}=\frac{1}{\sqrt{2}}\left(\chi_{-}^{(1)} \chi_{+}^{(2)}+\chi_{+}^{(1)} \chi_{-}^{(2)}\right)$

spin triplet and singlet

- One may check the result again

$$
\begin{aligned}
S_{-} \frac{\chi_{-}^{(1)} \chi_{+}^{(2)}+\chi_{+}^{(1)} \chi_{-}^{(2)}}{\sqrt{2}} & =\left(S_{1-}+S_{2-}\right) \frac{\chi_{-}^{(1)} \chi_{+}^{(2)}+\chi_{+}^{(1)} \chi_{-}^{(2)}}{\sqrt{2}} \\
& =\frac{1}{\sqrt{2}}\left(S_{1-} \chi_{+}^{(1)}\right) \chi_{-}^{(2)}+\frac{1}{\sqrt{2}} \chi_{-}^{(1)}\left(S_{2-} \chi_{+}^{(2)}\right) \\
& =\sqrt{2} \hbar \chi_{-}^{(1)} \chi_{-}^{(2)}
\end{aligned}
$$

- The remaining state $\mathrm{m}=0$

$$
X_{-}=\frac{1}{\sqrt{2}}\left(\chi_{-}^{(1)} \chi_{+}^{(2)}-\chi_{+}^{(1)} \chi_{-}^{(2)}\right)
$$

S^{2}

- check the S^{2} value

$$
\begin{aligned}
\mathbf{S}^{2} & =\left(\mathbf{S}_{1}+\mathbf{S}_{2}\right)^{2}=\mathbf{S}_{1}^{2}+\mathbf{S}_{2}^{2}+2 \mathbf{S}_{1} \cdot \mathbf{S}_{2} \\
& =\mathbf{S}_{1}^{2}+\mathbf{S}_{2}^{2}+2 S_{1 x} S_{2 x}+2 S_{1 y} S_{2 y}+2 S_{1 z} S_{2 z} \\
& =\mathbf{S}_{1}^{2}+\mathbf{S}_{2}^{2}+S_{1+} S_{2-}+S_{1-} S_{2+}+2 S_{1 z} S_{2 z}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{S}_{1}^{2} X_{+} & =\frac{1}{\sqrt{2}} \mathbf{S}_{1}^{2}\left(\chi_{-}^{(1)} \chi_{+}^{(2)}+\chi_{+}^{(1)} \chi_{-}^{(2)}\right) \\
& =\frac{3}{4} \hbar^{2} \frac{1}{\sqrt{2}}\left(\chi_{-}^{(1)} \chi_{+}^{(2)}+\chi_{+}^{(1)} \chi_{-}^{(2)}\right)=\frac{3}{4} \hbar^{2} X_{+}
\end{aligned}
$$

$$
\mathbf{S}_{1}^{2} X_{-}=\frac{3}{4} \hbar^{2} X_{-}
$$

$$
\mathbf{S}_{2}^{2} X_{+}=\frac{3}{4} \hbar^{2} X_{+}
$$

$$
\mathbf{S}_{2}^{2} X_{-}=\frac{3}{4} \hbar^{2} X_{-}
$$

$$
S_{1 z} S_{2 z} X_{+}=\frac{1}{\sqrt{2}} S_{1 z} S_{2 z}\left(\chi_{-}^{(1)} \chi_{+}^{(2)}+\chi_{+}^{(1)} \chi_{-}^{(2)}\right)
$$

$$
=\frac{1}{\sqrt{2}} S_{1 z} \chi_{-}^{(1)} S_{2 z} \chi_{+}^{(2)}+\frac{1}{\sqrt{2}} S_{1 z} \chi_{+}^{(1)} S_{2 z} \chi_{-}^{(2)}
$$

$$
S_{1 z} S_{2 z} X_{-}=-\frac{1}{4} \hbar^{2} X_{-}
$$

$$
=-\frac{1}{4} \hbar^{2} \frac{1}{\sqrt{2}}\left(\chi_{-}^{(1)} \chi_{+}^{(2)}+\chi_{+}^{(1)} \chi_{-}^{(2)}\right)=-\frac{1}{4} \hbar^{2} X_{+}
$$

S^{2}

$$
\begin{aligned}
\left(S_{1+} S_{2-}+S_{1-} S_{2+}\right) X_{+} & =\frac{1}{\sqrt{2}}\left(S_{1+} S_{2-}+S_{1-} S_{2+}\right)\left(\chi_{-}^{(1)} \chi_{+}^{(2)}+\chi_{+}^{(1)} \chi_{-}^{(2)}\right) \\
& =\frac{1}{\sqrt{2}}\left(S_{1+} \chi_{-}^{(1)}\right)\left(S_{2-} \chi_{+}^{(2)}\right)+\frac{1}{\sqrt{2}}\left(S_{1-} \chi_{+}^{(1)}\right)\left(S_{2+} \chi_{-}^{(2)}\right) \\
& =\frac{1}{\sqrt{2}} \hbar^{2}\left(\chi_{+}^{(1)} \chi_{-}^{(2)}+\chi_{-}^{(1)} \chi_{+}^{(2)}\right)=\hbar^{2} X_{+} \\
\left(S_{1+} S_{2-}+S_{1-} S_{2+}\right) X_{-} & =\frac{1}{\sqrt{2}}\left(S_{1+} S_{2-}+S_{1-} S_{2+}\right)\left(\chi_{-}^{(1)} \chi_{+}^{(2)}-\chi_{+}^{(1)} \chi_{-}^{(2)}\right) \\
& =\frac{1}{\sqrt{2}}\left(S_{1+} \chi_{-}^{(1)}\right)\left(S_{2-} \chi_{+}^{(2)}\right)-\frac{1}{\sqrt{2}}\left(S_{1-} \chi_{+}^{(1)}\right)\left(S_{2+} \chi_{-}^{(2)}\right) \\
& =-\frac{1}{\sqrt{2}} \hbar^{2}\left(\chi_{+}^{(1)} \chi_{-}^{(2)}-\chi_{-}^{(1)} \chi_{+}^{(2)}\right)=-\hbar^{2} X_{-}
\end{aligned}
$$

S^{2}

For $X_{+}, S=1$

$$
\begin{aligned}
\mathbf{S}^{2} X_{+} & =\mathbf{S}_{1}^{2} X_{+}+\mathbf{S}_{2}^{2} X_{+}+S_{1+} S_{2-} X_{+}+S_{1-} S_{2+} X_{+}+2 S_{1 z} S_{2 z} X_{+} \\
& =\frac{3}{4} \hbar^{2} X_{+}+\frac{3}{4} \hbar^{2} X_{+}+\hbar^{2} X_{+}-\frac{1}{2} \hbar^{2} X_{+} \\
& =2 \hbar^{2} X_{+}=S(S+1) \hbar^{2} X_{+}
\end{aligned}
$$

- For $\mathrm{X}_{-}, \mathrm{S}=0$

$$
\begin{aligned}
\mathbf{S}^{2} X_{-} & =\mathbf{S}_{1}^{2} X_{-}+\mathbf{S}_{2}^{2} X_{-}+S_{1+} S_{2-} X_{-}+S_{1-} S_{2+} X_{-}+2 S_{1 z} S_{2 z} X_{-} \\
& =\frac{3}{4} \hbar^{2} X_{-}+\frac{3}{4} \hbar^{2} X_{-}-\hbar^{2} X_{-}-\frac{1}{2} \hbar^{2} X_{-} \\
& =0
\end{aligned}
$$

representation

- product states
- total spin
state

Spin triplet

spin-dependent potential

- In many physical systems, two particle interaction is spin-dependent
- the duetron hamiltonian

$$
\begin{aligned}
& H=\frac{p_{1}^{2}}{2 m_{1}}+\frac{p_{2}^{2}}{2 m_{2}}+V_{1}(r)+\frac{1}{\hbar^{2}} \mathbf{S}_{1} \cdot \mathbf{S}_{2} V_{2}(r) \\
& \mathbf{S}_{1} \cdot \mathbf{S}_{2}=\frac{1}{2}\left(\mathbf{S}^{2}-\mathbf{S}_{1}^{2}-\mathbf{S}_{2}^{2}\right)=\frac{1}{2} \mathbf{S}^{2}-\frac{3}{4} \hbar^{2}
\end{aligned}
$$

- S^{2} is a good quantum number, but S_{z} is not
- for triplet $V(r)=V_{1}(r)+\left(1-\frac{3}{4}\right) V_{2}(r)=V_{1}(r)+\frac{1}{4} V_{2}(r)$
- for singlet $\quad V(r)=V_{1}(r)+\left(0-\frac{3}{4}\right) V_{2}(r)=V_{1}(r)-\frac{3}{4} V_{2}(r)$

spin-dependent potential

- for deutron, one observes a bound $S=1$ state and an unbound $\mathrm{S}=0$ state
- for BCS paring, bound state $S=0$

http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/coop.html

spin singlet and entanglement

- In the spin singlet, quantum states are entangled
- First we do S_{x} measurement on electron I, we have 50% to get '+' and 50% to get ' - '
- then we do S_{x} measurement on electron 2 , the result is 100% opposite to the result of electron I.

How does it work?

- entangled state $\psi=\frac{1}{\sqrt{2}}\left(\binom{1}{0}_{1}\binom{0}{1}_{2}-\binom{0}{1}_{1}\binom{1}{0}_{2}\right)$
- the measurement of $S_{x \mid}$ project the state to an eigenstate of S_{x} I

$$
S_{x 1}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\left|S_{x}=+\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{1}
$$

$$
P_{1}(+)=\left|S_{x}=+\right\rangle\left\langle S_{x}=+\right|
$$

- The project operator

$$
\begin{aligned}
& =\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 1
\end{array}\right) \frac{1}{\sqrt{2}}\binom{1}{1} \\
& =\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

measurement

- Projection result

$$
\begin{aligned}
P_{1}(+) \psi & =\frac{1}{\sqrt{2}} \frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{1}{0}_{1}\binom{0}{1}_{2}-\frac{1}{\sqrt{2}} \frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{0}{1}_{1}\binom{1}{0}_{2} \\
& =\frac{1}{2 \sqrt{2}}\binom{1}{1}_{1}\binom{0}{1}_{2}-\frac{1}{2 \sqrt{2}}\binom{1}{1}_{1}\binom{1}{0}_{2} \\
& =\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\binom{1}{1}_{1} \frac{1}{\sqrt{2}}\binom{-1}{1}_{2} \\
& =\psi^{\prime}
\end{aligned}
$$

- The following measurement on $\mathrm{S}_{\times 2}$ will only give `-' result

$$
S_{x 2} \psi^{\prime}=S_{x 2} P_{1}(+) \psi=-\frac{\hbar}{2} \psi^{\prime}
$$

- Einstein's comment:"spukhafte Fernwirkung" or "spooky action at a distance

Addition of L and S

- total angular momentum $\mathbf{J}=\mathbf{L}+\mathbf{S}$
- product state $Y_{l_{m}} \chi_{ \pm}$
- eigenstate $\mathbf{J}^{2} \psi_{j, m_{j}}=\hbar^{2} j(j+1) \psi_{j m_{j}}$

$$
J_{z} \psi_{j, m_{j}}=\hbar m_{j} \psi_{j, m_{j}}
$$

- eigenvalue $j=l \pm \frac{1}{2}$

$$
m_{j}=-j,-j+1 \cdots, j-1, j
$$

Addition of L and S

- case I $j=l+\frac{1}{2} \quad m_{j}=m+\frac{1}{2}$

$$
\psi_{j, m_{j}}=\sqrt{\frac{l+m+1}{2 l+1}} Y_{l m} \chi_{+}+\sqrt{\frac{l-m}{2 l+1}} Y_{l n+1} \chi_{-}
$$

- case $2 \quad j=l-\frac{1}{2} \quad m_{j}=m+\frac{1}{2}$

$$
\psi_{j, m_{j}}=\sqrt{\frac{l-m}{2 l+1}} Y_{l m} \chi_{+}+\sqrt{\frac{l+m+1}{2 l+1}} Y_{l m+1} \chi_{-}
$$

Addition of angular momenta

$$
\mathbf{J}=\mathbf{L}_{1}+\mathbf{L}_{2}
$$

- possible total angular momentum

$$
j=l_{1}+l_{2}, l_{1}+l_{2}-1, \cdots\left|l_{1}-l_{2}\right|
$$

- possible z-component

$$
m_{j}=-j,-j+1 \cdots, j-1, j
$$

