
Point estimations



Agenda
• Maximum Likelihood Estimation (MLE) 

• Method of Moments (MoM) 

• Bayesian estimation 

• Maximum a posteriori estimation (MAP) 

• Posterior mean



Maximum Likelihood 
Estimation



Likelihood function
The likelihood of unknown parameter    given your 
data. 

θ

https://en.wikipedia.org/wiki/Likelihood_function


• The likelihood function is a function of 

• It is not a probability density function 

• It measures the “support” (i.e. likelihood) 
provided by the data for each possible value of 
the parameter.

θ



MLE
• Find the parameter that is 

“most likely” to observe your 
data. 

• Maximizing the likelihood 
function is equivalent to 
maximizing the log-likelihood 
function (for computational 
issues)

https://towardsdatascience.com/probability-concepts-explained-
maximum-likelihood-estimation-c7b4342fdbb1

https://towardsdatascience.com/probability-concepts-explained-maximum-likelihood-estimation-c7b4342fdbb1
https://towardsdatascience.com/probability-concepts-explained-maximum-likelihood-estimation-c7b4342fdbb1


How to maximize a function?

http://tutorial.math.lamar.edu/Classes/CalcI/MinMaxValues.aspx


Example: coin tossing



Gradient descent

https://iamtrask.github.io/2015/07/27/python-network-part2/



Learning rate

https://blog.csdn.net/leadai/article/details/78662036



Local optimums

https://iamtrask.github.io/2015/07/27/python-network-part2/



Method of Moments



Expectation
• If    is a discrete random variable with p.m.f.       , 

• If    is a continuous random variable with p.d.f. 
      , 

•         are called moments with 

X fX(x)

E[X] = ∑
x

xfX(x)

X
fX(x)

E[X] = ∫x
xfX(x)

E [Xk] k ≥ 1



Law of large number
• If                          , then                 converges  
 
to        (in probability) as   

• LLN holds for every moments

X1, X2, ⋯, Xn
iid∼ fX(x) X̄ =

1
n

n

∑
i=1

Xi

E[Xi] n → ∞



Method of moments
• The values of moments depend on the values of 

unknown parameters    (moment conditions) 

• By LLN, we can estimate moments by sample 
means

θ



Example: normal distribution

Let  

• moment conditions: 
 
 
 

• By solving the above moment conditions we have

X1, X2, ⋯, Xn
iid∼ N(μ, σ2)

1
n

n

∑
i=1

Xi ≈ E[X1] = μ

1
n

n

∑
i=1

X2
i ≈ E[X2

1] = μ2 + σ2

̂μ =
1
n

n

∑
i=1

Xi,  and  ̂σ2 =
1
n

n

∑
i=1

X2
i − ̂μ2



Example: linear regression
Let                       with                              and  

• Moment conditions:

Yi
iid∼ N (μ(xi), σ2) xi = [xi1, ⋯, xip]

T
∈ ℝp

μ(xi) = β0 + β1xi1 + ⋯ + βpxip

E [Y − μ(x)] = 0

E [xj (Y − μ(x))] = 0

E [(Y − μ(x))2] = σ2



• Plug the sample moments into the moment 
conditions, we obtain

1
n

n

∑
i=1

(Yi − (β0 + βixi1 + ⋯ + βpxip)) ≈ 0

1
n

n

∑
i=1

xij (Yi − (β0 + βixi1 + ⋯ + βpxip)) ≈ 0

1
n

n

∑
i=1

(Yi − (β0 + βixi1 + ⋯ + βpxip))
2

≈ σ2



Solving linear systems
The solution of a linear system           can be 
found (if it exists) by  

• Gaussian elimination (numpy.linalg.solve) 

• Minimize               (numpy.linalg.lstsq)

Ax = b

∥Ax = b∥2

https://en.wikipedia.org/wiki/Gaussian_elimination
https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.linalg.solve.html
https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.linalg.lstsq.html#numpy.linalg.lstsq


Solving nonlinear systems
The solution of a nonlinear system             can be 
found (if it exists) by various root-finding 
algorithms (scipy.optimize.root)

F(x) = 0

http://www.csie.ntnu.edu.tw/~u91029/RootFinding.html

https://en.wikipedia.org/wiki/Root-finding_algorithm
https://en.wikipedia.org/wiki/Root-finding_algorithm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html#scipy.optimize.root


Newton’s method



Secant method



Pros
• Easy to compute and always work 

• MoM is consistent; i.e.               as ̂θMoM → θ n → ∞



Cons
• MoM may not be unique: different moment 

conditions yields to different results! 

• Not the most efficient (i.e. achieving minimum 
mean squared error, MSE) estimators 

• Sometimes MoM may be meaningless



MoM may be meaningless
• Suppose we observe 3, 5, 6, 18 from 

• Since                for               , the MoM of    is 

• This estimation is not acceptable since we have 
already observed a 18. 

U(0,θ)

E[X] = θ/2 X ∼ U(0,θ) θ

̂θMoM = 2X̄ = 2 ×
3 + 5 + 6 + 18

4
= 16



Extensions
• Generalized MoM 

• Generalized moment conditions 

• The number of conditions may exceed the 
number of parameters 

• Method of simulated moments 

• Approximate the theoretical moments when 
they are not available

https://en.wikipedia.org/wiki/Generalized_method_of_moments
https://en.wikipedia.org/wiki/Method_of_simulated_moments


Bayesian estimation



Key concepts
• Since    (derived from some random sample) is 

random, we can treat    as random and specify 
its probability distribution as  

• The probability       is usually specified by a data 
scientist to express one's beliefs. Thus, we call it 
a “prior”.

̂θ
θ

π(θ)

π(θ)



Posterior
• By Bayes’ theorem, we can derive the 

“posterior” distribution of   :θ

p(θ |X1, ⋯, Xn) =
f(X1, ⋯, Xn |θ)π(θ)

f(X1, ⋯, Xn)

=
f(X1, ⋯, Xn |θ)π(θ)

∫ f(X1, ⋯, Xn |θ)π(θ)dθ
∝ f(X1, ⋯, Xn |θ)π(θ)



Maximum a posteriori 
estimation

• The posterior distribution can be interpreted as 
the conditional probability of    given 
observational data 

• Thus, similar to MLE, we may find the mode of 
the posterior since it is the most likely value of  

θ

θ

̂θMAP = arg max f(X1, ⋯, Xn |θ)π(θ)



Posterior mean
• The “mean” of the posterior is another 

frequently used Bayesian estimator, 

• The expectation is often approximated by 
Markov chain Monte Carlo (MCMC) method 
since the above integration is usually difficult 

̂θ = E[θ |X1, ⋯, Xn] = ∫ θp (θ |X1, ⋯, Xn) dθ

https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo


Example: normal distribution

Let                               and we assume that   
                . Then  
 
 
 
and

X1, X2, ⋯, Xn
iid∼ N(μ, σ2)

μ ∼ N(μ0, τ2)

p(μ |X1, ⋯, Xn) ∝
1

2πτ
e− 1

2 ( μ − μ0
τ )

2 n

∏
i=1

1

2πσ
e− 1

2 ( Xi − μ
σ )

2

̂μ =
nτ2

nτ2 + σ2
X̄ +

1
nτ2 + σ2

μ0



(My unfair) suggestions
• Use Bayesian estimations when you have a 

domain expert; otherwise, use MLE 

• Use MoM only for computational issues 

• The posterior (or likelihood function) is not 
convex 

• Big data



Homework: logistic regression

• Breast Cancer Wisconsin (Diagnostic) Data Set (also 
available in scikit-learn) 

• Assume that                                         with 
 
 
 
 
Estimate the unknown coefficients 
by either MLE or MoM. Compare your results with 
the the ones provided by scikit-learn (example) with 
very large C.

Yi ∈ {0,1} iid∼ Bernoulli(p(xi))

p(xi) =
exp [β0 + β1xi1 + ⋯ + βpxip]

1 + exp [β0 + β1xi1 + ⋯ + βpxip]
θ = [β0, β1, ⋯, βp]′�

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html#sklearn.datasets.load_breast_cancer
https://www.stat.cmu.edu/~cshalizi/uADA/12/lectures/ch12.pdf
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://pythonhealthcare.org/2018/04/15/66-machine-learning-your-first-ml-model-using-logistic-regression-to-diagnose-breast-cancer/


• Moment conditions: 

• Plug the sample moments into the moment 
conditions, we obtain

E [Y − p(x)] = 0

E [xj (Y − p(x))] = 0

1
n

n

∑
i=1

(Yi − p (xi)) = 0

1
n

n

∑
i=1

xij (Yi − p (xi)) = 0



Readings
• Chapters 10.1-10.3 and 12.1-12.2 of “All of 

statistics”


