Point estimations

Agenda

- Maximum Likelihood Estimation (MLE)
- Method of Moments (MoM)
- Bayesian estimation
- Maximum a posteriori estimation (MAP)
- Posterior mean

Maximum Likelihood Estimation

Likelihood function

The likelihood of unknown parameter θ given your data.
x_{1}, \ldots, x_{n} : random sample from $f(x)(\theta)$

$$
L\left(\theta \mid x_{1}, \cdots, x_{n}\right)=\frac{f\left(x_{1}, \cdots, x_{n} \mid \theta\right)}{\text { Joint probability } / \text { density }}
$$

special case: if x_{1}, \cdots, x_{n} ind $f(x \mid \theta)$

$$
L\left(\theta \mid x_{1}, \cdots, x_{n}\right)=\prod_{i=1}^{n} f\left(x_{i}(\theta)\right. \text { (好算) }
$$

- The likelihood function is a function of θ
- It is not a probability density function
- It measures the "support" (i.e. likelihood) provided by the data for each possible value of the parameter.

$\square \square$

- Find the parameter that is "most likely" to observe your data.
- Maximizing the likelihood function is equivalent to maximizing the log-likelihood function (for computational issues)
$l C \theta\left(x_{1}, \cdots, x_{n}\right)=\log L\left(\theta \mid x_{1}, \cdots, x_{n}\right)$

https://towardsdatascience.com/probability-concepts-explained-maximum-likelihood-estimation-c7b4342fdbb1

How to maximize a function?

Example: coin tossing
Assume $x_{1}, \cdots, x_{n} \stackrel{\text { ied }}{\sim} \operatorname{Bernoull}(f)$

$$
\begin{aligned}
& L\left(P\left(x_{1}, \cdots, x_{n}\right)=\prod_{i=1}^{n} p^{x_{i}}\left((-p)^{1-x_{i}}\right.\right. \\
& l P\left(x_{1}, \cdots, x_{n}\right)=\log L=\sum_{i=1}^{n} x_{i} \cdot \log P+\left(1-x_{i}\right) \log ((-p) \\
& \frac{d l}{d p}=\sum_{i=1}^{n} \frac{x_{i}}{P}-\frac{1-x_{i}}{1-p}=\cdots=\frac{\sum_{i=1}^{n} x_{i}-n p}{P(1-p)} \triangleq 0 \\
& \Rightarrow \hat{p}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \triangleq \bar{x}
\end{aligned}
$$

Gradient descent

https://iamtrask.github.io/2015/07/27/python-network-part2/

Learning rate

https://blog.csdn.net/leadai/article/details/78662036

Local optimums

Method of Moments

Expectation

- If X is a discrete random variable with p.m.f. $f_{X}(x)$,

$$
E[X]=\sum_{x} x f_{X}(x)
$$

- If X is a continuous random variable with p.d.f. $f_{X}(x)$,

$$
E[X]=\int_{x} x f_{X}(x)
$$

- $E\left[X^{k}\right]$ are called moments with $k \geq 1$

Law of large number

- If $X_{1}, X_{2}, \cdots, X_{n} \stackrel{i i d}{\sim} f_{X}(x)$, then $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ converges
to $E\left[X_{i}\right]$ (in probability) as $n \rightarrow \infty$
- LLN holds for every moments

Method of moments

- The values of moments depend on the values of unknown parameters θ (moment conditions)
- By LLN, we can estimate moments by sample means

Example: normal distribution

Let $X_{1}, X_{2}, \cdots, X_{n} \stackrel{i i d}{\sim} N\left(\mu, \sigma^{2}\right)$

- moment conditions:

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} X_{i} \approx E\left[X_{1}\right]=\mu \\
& \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \approx E\left[X_{1}^{2}\right]=\mu^{2}+\sigma^{2}
\end{aligned}
$$

- By solving the above moment conditions we have

$$
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \text { and } \hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\hat{\mu}^{2}
$$

Example: linear regression

Let $Y_{i} \stackrel{i i d}{\sim} N\left(\mu\left(\mathbf{x}_{i}\right), \sigma^{2}\right)$ with $\mathbf{x}_{i}=\left[x_{i 1}, \cdots, x_{i p}\right]^{T} \in \mathbb{R}^{p}$ and $\mu\left(\mathbf{x}_{i}\right)=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p} x_{i p}$

- Moment conditions:

$$
\begin{aligned}
E[Y-\mu(\mathbf{x})] & =0 \\
E\left[x_{j}(Y-\mu(\mathbf{x}))\right] & =0 \\
E\left[(Y-\mu(\mathbf{x}))^{2}\right] & =\sigma^{2}
\end{aligned}
$$

- Plug the sample moments into the moment conditions, we obtain

$$
\begin{array}{r}
\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\left(\beta_{0}+\beta_{i} x_{i 1}+\cdots+\beta_{p} x_{i p}\right)\right) \approx 0 \\
\frac{1}{n} \sum_{i=1}^{n} x_{i j}\left(Y_{i}-\left(\beta_{0}+\beta_{i} x_{i 1}+\cdots+\beta_{p} x_{i p}\right)\right) \approx 0 \\
\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\left(\beta_{0}+\beta_{i} x_{i 1}+\cdots+\beta_{p} x_{i p}\right)\right)^{2} \approx \sigma^{2}
\end{array}
$$

Solving linear systems

The solution of a linear system $\mathbf{A x}=\mathbf{b}$ can be found (if it exists) by

- Gaussian elimination (numpy.linalg.solve)
- Minimize $\|\mathbf{A x}=\mathbf{b}\|^{2}$ (numpy.linalg.lstsq)

Solving nonlinear systems

The solution of a nonlinear system $\mathbf{F}(\mathbf{x})=\mathbf{0}$ can be found (if it exists) by various root-finding algorithms (scipy.optimize.root)

http://www.csie.ntnu.edu.tw/~u91029/RootFinding.html

Newton's method

Secant method

Pros

- Easy to compute and always work
- MoM is consistent; i.e. $\hat{\theta}_{\text {MoM }} \rightarrow \theta$ as $n \rightarrow \infty$

Cons

- MoM may not be unique: different moment conditions yields to different results!
- Not the most efficient (i.e. achieving minimum mean squared error, MSE) estimators
- Sometimes MoM may be meaningless

MoM may be meaningless

- Suppose we observe $3,5,6,18$ from $U(0, \theta)$
- Since $E[X]=\theta / 2$ for $X \sim U(0, \theta)$, the MoM of θ is

$$
\hat{\theta}_{M o M}=2 \bar{X}=2 \times \frac{3+5+6+18}{4}=16
$$

- This estimation is not acceptable since we have already observed a 18.

Extensions

- Generalized MoM
- Generalized moment conditions
- The number of conditions may exceed the number of parameters
- Method of simulated moments
- Approximate the theoretical moments when they are not available

Bayesian estimation

Key concepts

- Since $\hat{\theta}$ (derived from some random sample) is random, we can treat θ as random and specify its probability distribution as $\pi(\theta)$
- The probability $\pi(\theta)$ is usually specified by a data scientist to express one's beliefs. Thus, we call it a "prior".

Posterior

- By Bayes' theorem, we can derive the "posterior" distribution of θ :

$$
\begin{aligned}
p\left(\theta \mid X_{1}, \cdots, X_{n}\right) & =\frac{f\left(X_{1}, \cdots, X_{n} \mid \theta\right) \pi(\theta)}{f\left(X_{1}, \cdots, X_{n}\right)} \\
& =\frac{f\left(X_{1}, \cdots, X_{n} \mid \theta\right) \pi(\theta)}{\int f\left(X_{1}, \cdots, X_{n} \mid \theta\right) \pi(\theta) d \theta} \\
& \propto f\left(X_{1}, \cdots, X_{n} \mid \theta\right) \pi(\theta)
\end{aligned}
$$

Maximum a posteriori estimation

- The posterior distribution can be interpreted as the conditional probability of θ given observational data
- Thus, similar to MLE, we may find the mode of the posterior since it is the most likely value of θ

$$
\hat{\theta}_{M A P}=\arg \max f\left(X_{1}, \cdots, X_{n} \mid \theta\right) \pi(\theta)
$$

Posterior mean

- The "mean" of the posterior is another frequently used Bayesian estimator,

$$
\hat{\theta}=E\left[\theta \mid X_{1}, \cdots, X_{n}\right]=\int \theta p\left(\theta \mid X_{1}, \cdots, X_{n}\right) d \theta
$$

- The expectation is often approximated by Markov chain Monte Carlo (MCMC) method since the above integration is usually difficult

Example: normal distribution

Let $X_{1}, X_{2}, \cdots, X_{n} \stackrel{i i d}{\sim} N\left(\mu, \sigma^{2}\right)$ and we assume that $\mu \sim N\left(\mu_{0}, \tau^{2}\right)$. Then

$$
p\left(\mu \mid X_{1}, \cdots, X_{n}\right) \propto \frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{\mu-\mu_{0}}{\tau}\right)^{2}} \prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}}
$$

and

$$
\hat{\mu}=\frac{n \tau^{2}}{n \tau^{2}+\sigma^{2}} \bar{X}+\frac{1}{n \tau^{2}+\sigma^{2}} \mu_{0}
$$

(My unfair) suggestions

- Use Bayesian estimations when you have a domain expert; otherwise, use MLE
- Use MoM only for computational issues
- The posterior (or likelihood function) is not convex
- Big data

Homework: logistic regression

- Breast Cancer Wisconsin (Diagnostic) Data Set (also available in scikit-learn)
- Assume that $Y_{i} \in\{0,1\} \stackrel{i i d}{\sim} \operatorname{Bernoulli}\left(p\left(\mathbf{x}_{i}\right)\right)$ with

$$
p\left(x_{i}\right)=\frac{\exp \left[\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p} x_{i p}\right]}{1+\exp \left[\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p} x_{i p}\right]}
$$

Estimate the unknown coefficients $\theta=\left[\beta_{0}, \beta_{1}, \cdots, \beta_{p}\right]^{\prime}$ by either MLE or MoM. Compare your results with the the ones provided by scikit-learn (example) with very large C.

- Moment conditions:

$$
\begin{aligned}
E[Y-p(\mathbf{x})] & =0 \\
E\left[x_{j}(Y-p(\mathbf{x}))\right] & =0
\end{aligned}
$$

- Plug the sample moments into the moment conditions, we obtain

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-p\left(\mathbf{x}_{i}\right)\right) & =0 \\
\frac{1}{n} \sum_{i=1}^{n} x_{i j}\left(Y_{i}-p\left(\mathbf{x}_{i}\right)\right) & =0
\end{aligned}
$$

Readings

- Chapters 10.1-10.3 and 12.1-12.2 of "All of statistics"

