Introduction to data

Data matrix

variable						
	\downarrow					
Stu.	gender	intro_extra	\cdots	dread		
1	male	extravert	\cdots	3		
2	female	extravert	\cdots	2		
3	female	introvert	\cdots	4		
4	female	extravert	\cdots	2	$\quad \leftarrow$	observation
:---:						
\vdots						

Types of variables

Types of variables (cont.)

	gender	sleep	bedtime	countries	dread
1	male	5	$12-2$	13	3
2	female	7	$10-12$	7	2
3	female	5.5	$12-2$	1	4
4	female	7	$12-2$		2
5	female	3	$12-2$	1	3
6	female	3	$12-2$	9	4

- gender: categorical
- sleep: numerical, continuous
- bedtime: categorical, ordinal

Explanatory and response variables

- To identify the explanatory variable in a pair of variables, identify which of the two is suspected of affecting the other:
explanatory variable $\xrightarrow{\text { might affect }}$ response variable
- Labeling variables as explanatory and response does not guarantee the relationship between the two is actually causal, even if there is an association identified between the two variables.

Research questions

- 相關性（association）
- 因果關係（causation）
- 預測（prediction）

Association

－hours of study v．s．GPA
－medical treatment v．s．survival rate
－心電圖（electrocardiography）v．s．heart attack
－image v．s．object label
－etc．

Causation

Association $=$ Causation

Older people exercise less. What if groups differ in age?

[^0]

Older people have more risk of heart disease.

Confounding（cont．）

－味精有害健康嗎？
－Exclude confounding factors proper design of experiments

Prediction

－Predict the future behavior of a new observation， e．g．，
－gene v．s．disease
－機台狀態 v．s．defect
－weather prediction
－烘豆溫度曲線 v．s．咖啡豆品質
－association means prediction

Population

- 所有研究對象稱為母體，e．g．，
- 2018台中市長選舉勝負：台中市合格選民
- image object detection／recognition：所有images
- 心電圖 v．s．心臟病：所有病人的心電圖

Sample

－母體的任意子集合稱為樣本（以管窺天）
－random sample
－nonrandom sample
－sample of interest

Sampling bias

- Non-response: If only a small fraction of the randomly sampled people choose to respond to a survey, the sample may no longer be representative of the population.
- Convenience sample: Individuals who are easily accessible are more likely to be included in the sample.

Sampling bias (cont.)

- Voluntary response: Occurs when the sample consists of people who volunteer to respond because they have strong opinions on the issue.
Quick vote

Do you get paid sick days at
your job?
Yes
What job?
vote or view results

Quick vote

Do you get paid sick days at your job?
Read Related Articles

| Yes | \||||||||||||||||||||| | 63\% 20056 |
| :---: | :---: | :---: |
| No | IIIIIII | 21\% 6816 |
| What job? | IIIII | 15\% 4885 |
| Total votes: This is not a | $: 31757$
 scientific poll | |

Simple random sample

Stratified sample

Multistage sample

Experiment

- compare treatments
- control variables (reduce confounding variables)
- fractional design
- bayesian optimization
- etc.

Readings

- Chapter 2 of our first reference
- Chapter 1 of Introductory Statistics with Randomization and Simulation

Homework \#1

1. Plot the function $y=\sin (2 \pi x)$ with Numpy and Matplotlib.
2. Generate 100 random points x_{1}, \ldots, x_{100} in $[0,1]$ with $y_{i}=\sin \left(2 \pi x_{i}\right)$. Fit the data pairs $\left(x_{i}, y_{i}\right)$ by radial basis functions (provided by Scipy) and plot the fitted function.
3. Generate another 100 equispaced points in [1/4,3/4] and repeat 2 again.

[^0]: If ages are the same, no confounding.
 physical inactivity

