3D system

2017/4/4

Schrodinger equation in 3D

• in 3D system
$$H = \frac{\mathbf{p}^2}{2\mu} + V(\mathbf{r})$$

• μ mass

- momentum operator in 3D $\mathbf{p} = \left(p_x, p_y, p_z\right) = \left(\frac{\hbar}{i}\frac{\partial}{\partial x}, \frac{\hbar}{i}\frac{\partial}{\partial y}, \frac{\hbar}{i}\frac{\partial}{\partial z}\right)$
- Schrodinger equation

$$-\frac{\hbar^2}{2\mu} \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right] \psi(x, y, z) + V(x, y, z) \psi(x, y, z) = E \psi(x, y, z)$$

Separable system

• The kinetic energy is additive

$$\mathbf{p}^{2} = p_{x}^{2} + p_{y}^{2} + p_{z}^{2}$$

• if potential energy is additive

$$V(x,y,z) = V_1(x) + V_2(y) + V_3(z)$$

- motion in additive potential is separable
- In classical mechanics

$$\mu \frac{d^2 x}{dt^2} = -\frac{\partial V_1(x)}{\partial x}$$
$$\mu \frac{d^2 y}{dt^2} = -\frac{\partial V_2(y)}{\partial y}$$
$$\mu \frac{d^2 z}{dt^2} = -\frac{\partial V_3(z)}{\partial z}$$

Examples

• particle in a infinite box of dimensions L_1, L_2 and L_3

 symmetric harmonic potential in 3D

$$V(x,y,z) = \frac{1}{2}m\omega^{2}r^{2} = \frac{1}{2}m\omega^{2}(x^{2} + y^{2} + z^{2})$$

Separable system

• the eigenstate wavefunction

 $\psi(x,y,z) = u(x)v(y)w(z)$

• for each coordinate variable

$$-\frac{\hbar^2}{2\mu}\frac{\partial^2}{\partial x^2}u(x) + V_1(x)u(x) = E_1u(x)$$
$$-\frac{\hbar^2}{2\mu}\frac{\partial^2}{\partial y^2}v(y) + V_2(y)v(y) = E_2v(y)$$
$$-\frac{\hbar^2}{2\mu}\frac{\partial^2}{\partial z^2}w(z) + V_3(z)w(z) = E_3w(z)$$

• The eigenenergy is additive $E = E_1 + E_2 + E_3$

Central potential

• central potential problem

 $V(\mathbf{r}) = V(r)$

separable in spherical coordinate

• kinetic energy in spherical coordinate

$$-\frac{\hbar^{2}}{2\mu} \left[\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}} \right] = -\frac{\hbar^{2}}{2\mu} \nabla^{2}$$

$$\nabla^{2} \rightarrow \frac{\partial^{2}}{\partial r^{2}} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^{2}} \left(\frac{\partial^{2}}{\partial \theta^{2}} + \cot\theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^{2}\theta} \frac{\partial^{2}}{\partial \phi^{2}} \right)$$

$$\nabla^{2} = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial}{\sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2}\theta} \frac{\partial^{2}}{\partial \phi^{2}}$$

Easy way to memorize

$$\begin{aligned} \frac{\partial}{\partial x} &= \frac{\partial r}{\partial x}\frac{\partial}{\partial r} + \frac{\partial \theta}{\partial x}\frac{\partial}{\partial \theta} + \frac{\partial \phi}{\partial x}\frac{\partial}{\partial \phi} \\ \frac{\partial^2}{\partial x^2} &= \frac{\partial}{\partial x} \left(\frac{\partial r}{\partial x}\frac{\partial}{\partial r} + \frac{\partial \theta}{\partial x}\frac{\partial}{\partial \theta} + \frac{\partial \phi}{\partial x}\frac{\partial}{\partial \phi}\right) \\ &= \left(\frac{\partial r}{\partial x}\right)^2 \frac{\partial^2}{\partial r^2} + \left(\frac{\partial \theta}{\partial x}\right)^2 \frac{\partial^2}{\partial \theta^2} + \left(\frac{\partial \phi}{\partial x}\right)^2 \frac{\partial^2}{\partial \phi^2} + \frac{\partial^2 r}{\partial x^2}\frac{\partial}{\partial r} + \frac{\partial^2 \theta}{\partial x^2}\frac{\partial}{\partial \theta} + \frac{\partial^2 \phi}{\partial x^2}\frac{\partial}{\partial \phi} \\ &+ 2\frac{\partial r}{\partial x}\frac{\partial \theta}{\partial x}\frac{\partial}{\partial r}\frac{\partial}{\partial \theta} + 2\frac{\partial \theta}{\partial x}\frac{\partial \phi}{\partial x}\frac{\partial}{\partial \theta}\frac{\partial}{\partial \phi} + 2\frac{\partial r}{\partial x}\frac{\partial \phi}{\partial x}\frac{\partial}{\partial r}\frac{\partial}{\partial \phi} \\ \end{aligned}$$

2nd derivative terms

∇		$\frac{\phi^2}{\phi^2}$
+	$\left[\frac{\partial^2 r}{\partial x^2} + \frac{\partial^2 r}{\partial y^2} + \frac{\partial^2 r}{\partial z^2}\right]\frac{\partial}{\partial r} + \left[\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} + \frac{\partial^2 \theta}{\partial z^2}\right]\frac{\partial}{\partial \theta} + \left[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}\right]\frac{\partial}{\partial \phi}$ Ist derivative terms	rms
+	$-2\left[\frac{\partial r}{\partial x}\frac{\partial \theta}{\partial x} + \frac{\partial r}{\partial y}\frac{\partial \theta}{\partial y} + \frac{\partial r}{\partial z}\frac{\partial \theta}{\partial z}\right]\frac{\partial}{\partial r}\frac{\partial}{\partial \theta} + 2\left[\frac{\partial \theta}{\partial x}\frac{\partial \phi}{\partial x} + \frac{\partial \theta}{\partial y}\frac{\partial \phi}{\partial y} + \frac{\partial \theta}{\partial z}\frac{\partial \phi}{\partial z}\right]\frac{\partial}{\partial \theta}\frac{\partial}{\partial \phi} + 2\left[\frac{\partial r}{\partial x}\frac{\partial \phi}{\partial x} + \frac{\partial r}{\partial y}\frac{\partial \phi}{\partial y} + \frac{\partial r}{\partial z}\frac{\partial \phi}{\partial z}\right]\frac{\partial}{\partial \theta}\frac{\partial}{\partial \phi} + 2\left[\frac{\partial r}{\partial x}\frac{\partial \phi}{\partial x} + \frac{\partial r}{\partial y}\frac{\partial \phi}{\partial y} + \frac{\partial r}{\partial z}\frac{\partial \phi}{\partial z}\right]\frac{\partial}{\partial \theta}\frac{\partial}{\partial \phi} + 2\left[\frac{\partial r}{\partial x}\frac{\partial \phi}{\partial x} + \frac{\partial r}{\partial y}\frac{\partial \phi}{\partial y} + \frac{\partial r}{\partial z}\frac{\partial \phi}{\partial z}\right]\frac{\partial}{\partial \theta}\frac{\partial}{\partial \phi} + 2\left[\frac{\partial r}{\partial x}\frac{\partial \phi}{\partial x} + \frac{\partial r}{\partial y}\frac{\partial \phi}{\partial y} + \frac{\partial r}{\partial z}\frac{\partial \phi}{\partial z}\right]\frac{\partial}{\partial \theta}\frac{\partial}{\partial \phi} + 2\left[\frac{\partial r}{\partial x}\frac{\partial \phi}{\partial x} + \frac{\partial r}{\partial y}\frac{\partial \phi}{\partial y} + \frac{\partial r}{\partial z}\frac{\partial \phi}{\partial z}\right]\frac{\partial}{\partial \theta}\frac{\partial}{\partial \phi} + 2\left[\frac{\partial r}{\partial x}\frac{\partial \phi}{\partial x} + \frac{\partial r}{\partial y}\frac{\partial \phi}{\partial y} + \frac{\partial r}{\partial z}\frac{\partial \phi}{\partial z}\right]\frac{\partial}{\partial \theta}\frac{\partial}{\partial \phi} + 2\left[\frac{\partial r}{\partial x}\frac{\partial \phi}{\partial x} + \frac{\partial r}{\partial y}\frac{\partial \phi}{\partial y} + \frac{\partial r}{\partial z}\frac{\partial \phi}{\partial z}\right]\frac{\partial}{\partial \theta}\frac{\partial}{\partial \phi} + 2\left[\frac{\partial r}{\partial x}\frac{\partial \phi}{\partial x} + \frac{\partial r}{\partial y}\frac{\partial \phi}{\partial y} + \frac{\partial r}{\partial z}\frac{\partial \phi}{\partial z}\right]\frac{\partial}{\partial \theta}\frac{\partial}{\partial \phi}$	<u>д</u> д дr дф

cross terms =0

Jacobian

$$\frac{\partial r}{\partial x} = \sin\theta\cos\phi$$

$$\frac{\partial r}{\partial y} = \sin\theta\cos\phi$$

$$\frac{\partial r}{\partial y} = \sin\theta\cos\phi$$

$$\frac{\partial r}{\partial z} = -\cos\theta$$

$$\frac{\partial \theta}{\partial x} = \frac{\cos\theta\cos\phi}{r}$$

$$\frac{\partial \theta}{\partial z} = \frac{\cos\theta\sin\phi}{r}$$

$$\frac{\partial \theta}{\partial z} = -\frac{\sin\theta}{r}$$

$$\frac{\partial \theta}{\partial z} = -\frac{\sin\theta}{r\sin\theta}$$

$$\frac{\partial \phi}{\partial y} = \frac{\cos\phi}{r\sin\theta}$$

$$\frac{\partial \phi}{\partial z} = 0$$

$$\frac{\partial \phi}{\partial z} = 0$$

2nd derivative terms

$$\left(\frac{\partial r}{\partial x}\right)^{2} + \left(\frac{\partial r}{\partial y}\right)^{2} + \left(\frac{\partial r}{\partial z}\right)^{2} = \sin^{2}\theta\cos^{2}\phi + \sin^{2}\theta\cos^{2}\phi + \cos^{2}\theta = 1$$

$$\left(\frac{\partial \theta}{\partial x}\right)^{2} + \left(\frac{\partial \theta}{\partial y}\right)^{2} + \left(\frac{\partial \theta}{\partial z}\right)^{2} = \frac{\cos^{2}\theta\cos^{2}\phi}{r^{2}} + \frac{\cos^{2}\theta\sin^{2}\phi}{r} + \frac{\sin^{2}\theta}{r^{2}} = \frac{1}{r^{2}}$$

$$\left(\frac{\partial \phi}{\partial x}\right)^{2} + \left(\frac{\partial \phi}{\partial y}\right)^{2} + \left(\frac{\partial \phi}{\partial z}\right)^{2} = \frac{\sin^{2}\phi}{r^{2}\sin^{2}\theta} + \frac{\cos^{2}\phi}{r^{2}\sin^{2}\theta} = \frac{1}{r^{2}\sin^{2}\theta}$$
Cross terms

$$\frac{\partial \theta}{\partial x} + \frac{\partial r}{\partial y}\frac{\partial \theta}{\partial y} + \frac{\partial r}{\partial z}\frac{\partial \theta}{\partial z} = \frac{\sin\theta\cos\theta\cos^{2}\phi}{r} + \frac{\sin\theta\cos\theta\sin^{2}\phi}{r} - \frac{\sin\theta\cos\theta}{r} = 0$$

$$\frac{\partial \phi}{\partial x} + \frac{\partial r}{\partial y}\frac{\partial \phi}{\partial y} + \frac{\partial r}{\partial z}\frac{\partial \phi}{\partial z} = -\sin\theta\cos\phi\frac{\sin\phi}{r\sin\theta} + \sin\theta\cos\phi\frac{\cos\phi}{r\sin\theta} = 0$$

$$\frac{\partial \phi}{\partial x} + \frac{\partial \theta}{\partial y}\frac{\partial \phi}{\partial y} + \frac{\partial \theta}{\partial z}\frac{\partial \phi}{\partial z} = \frac{\cos\theta\cos\phi}{r}\frac{\sin\phi}{r\sin\theta} + \frac{\cos\theta\sin\phi}{r}\frac{\cos\phi}{r\sin\theta} = 0$$

Ist derivative terms

$$\nabla^{2} = \frac{\partial^{2}}{\partial r^{2}} + \frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^{2}} \cot \theta \frac{\partial}{\partial \theta}$$
$$= \frac{\partial^{2}}{\partial r^{2}} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{\hbar^{2} r^{2}} L^{2}$$

 $\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$

Separation of variables

separation of variables

 $\psi(r,\theta,\phi) = R(r)Y(\theta,\phi)$

$$-\frac{\hbar^2}{2\mu} \left[\frac{Y}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial R}{\partial r} \right) + \frac{R}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial Y}{\partial \theta} \right) + \frac{R}{r^2 \sin^2 \theta} \frac{\partial^2 Y}{\partial \phi^2} \right] + V(r)RY$$
$$= ERY$$

$$-\frac{\hbar^2}{2\mu} \left[\frac{1}{r^2 R} \frac{\partial}{\partial r} \left(r^2 \frac{\partial R}{\partial r} \right) + \frac{1}{r^2 Y \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial Y}{\partial \theta} \right) + \frac{1}{r^2 Y \sin^2 \theta} \frac{\partial^2 Y}{\partial \phi^2} \right] + V(r) = E$$

separation constant

$$\frac{1}{R}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial R}{\partial r}\right) - \frac{2\mu r^{2}}{\hbar^{2}}\left(V - E\right) + \frac{1}{Y\sin\theta}\left[\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial Y}{\partial\theta}\right) + \frac{1}{\sin\theta}\frac{\partial^{2}Y}{\partial\phi^{2}}\right] = 0$$

$$\frac{1}{R}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial R}{\partial r}\right) - \frac{2\mu r^{2}}{\hbar^{2}}\left(V - E\right) = l(l+1)$$
$$\frac{1}{V\sin\theta}\left[\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial Y}{\partial\theta}\right) + \frac{1}{\sin\theta}\frac{\partial^{2}Y}{\partial\phi^{2}}\right] = -l(l+1)$$

Angular equation

$$\sin\theta \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial Y}{\partial\theta}\right) + \frac{\partial^2 Y}{\partial\phi^2} = -l(l+1)\sin^2\theta Y$$

 $Y(\theta,\phi) = \Theta(\theta)\Phi(\phi)$

$$\frac{1}{\Theta}\sin\theta\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\Theta}{\partial\theta}\right) + l(l+1)\sin^2\theta + \frac{1}{\Phi}\frac{\partial^2\Phi}{\partial\phi^2} = 0$$
$$\frac{1}{\Theta}\sin\theta\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\Theta}{\partial\theta}\right) + l(l+1)\sin^2\theta = m^2$$
$$\frac{1}{\Phi}\frac{\partial^2\Phi}{\partial\phi^2} = -m^2$$

ϕ equation

• equation for φ

$$\frac{\partial^2 \Phi}{\partial \phi^2} = -m^2 \Phi$$

• boundary condition

 $\Phi(\phi+2\pi) = \Phi(\phi)$

• solution $\Phi = e^{im\phi}$ $m = 0, \pm 1, \pm 2 \cdots$

θ equation

$$\sin\theta \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial\Theta}{\partial\theta}\right) + l(l+1)\sin^2\theta\Theta = m^2\Theta$$

• The solutions are special functions, called associated Legendre functions

 $\Theta(\theta) = P_l^m(\cos\theta)$

Legendre polynomials

 Associated Legendre functions can be generated from Legendre polynomials P₁

$$P_{l}^{m}(x) = \left(1 - x^{2}\right)^{m/2} \left(\frac{d}{dx}\right)^{m} P_{l}(x) \qquad m > 0 \qquad P_{l}^{-m}(x) = P_{l}^{m}(x)$$

• Legendre polynomials are

$$P_l(x) = \frac{1}{2^l l!} \left(\frac{d}{dx}\right)^l \left(x^2 - 1\right)^l$$

called Rodrigues formula

limitations on I and m

• *l* should be non-negative integers $l = 0, 1, 2, \cdots$

• if
$$|m| > l$$
 $P_l^m(x) = 0$

• possible values of $m = -l, -l+1, \dots, 0, \dots l-1, l$

$$P_{0}^{0} = 1 \qquad P_{2}^{0} = \frac{1}{2}(3\cos^{2}\theta - 1)$$

$$P_{1}^{1} = \sin\theta \qquad P_{3}^{3} = 15\sin\theta(1 - \cos^{2}\theta)$$

$$P_{1}^{0} = \cos\theta \qquad P_{3}^{2} = 15\sin^{2}\theta\cos\theta$$

$$P_{2}^{2} = 3\sin^{2}\theta \qquad P_{3}^{1} = \frac{3}{2}\sin\theta(5\cos^{2}\theta - 1)$$

$$P_{2}^{1} = 3\sin\theta\cos\theta \qquad P_{3}^{0} = \frac{1}{2}(5\cos^{3}\theta - 3\cos\theta)$$

Spherical harmonics

normalized wavefunctions Y are called spherical harmonics

 $\int |Y|^2 \sin\theta \, d\theta \, d\phi = 1$

$$Y_{lm}(\theta,\phi) = (-1)^{m} \left[\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!} \right]^{1/2} P_{l}^{m}(\cos\theta) e^{im\phi}$$

- *l*: azimuthal quantum number
- *m*:magnetic quantum number

Introduction of L

$$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{\hbar^2 r^2} L^2$$

$$L_{z} = \frac{\hbar}{i} \frac{\partial}{\partial \phi} \qquad L_{\pm} = \hbar e^{\pm i\phi} \left(\pm \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right)$$

 $L^{2} = L_{x}^{2} + L_{y}^{2} + L_{z}^{2} = L_{+}L_{-} - \hbar L_{z} + L_{z}^{2}$

$$L_{+}L_{-} = \hbar^{2}e^{i\phi}\left(\frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right)e^{-i\phi}\left(-\frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right)$$
$$= \hbar^{2}\left[-\frac{\partial^{2}}{\partial\theta^{2}} - \cot^{2}\theta\frac{\partial^{2}}{\partial\phi^{2}} - i\frac{1}{\sin^{2}\theta}\frac{\partial}{\partial\phi} + \cot\theta\left(-\frac{\partial}{\partial\theta} + i\cot\theta\frac{\partial}{\partial\phi}\right)\right]$$

$$L^{2} = \hbar^{2} \left[-\frac{\partial^{2}}{\partial \theta^{2}} - \cot^{2} \theta \frac{\partial^{2}}{\partial \phi^{2}} - i \frac{1}{\sin^{2} \theta} \frac{\partial}{\partial \phi} + \cot \theta \left(-\frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right) \right] + i \hbar^{2} \frac{\partial}{\partial \phi} - \hbar^{2} \frac{\partial^{2}}{\partial \phi^{2}} \right]$$
$$= \hbar^{2} \left[-\frac{\partial^{2}}{\partial \theta^{2}} - \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} - \cot \theta \frac{\partial}{\partial \theta} \right]$$

Radial part

• use the eigenstate of L^2

$$L^{2}|l,m\rangle = l(l+1)\hbar^{2}|l,m\rangle \qquad L^{2}Y_{lm}(\theta,\phi) = l(l+1)\hbar^{2}Y_{lm}(\theta,\phi)$$

• separation of variables

$$\Psi(r,\theta,\phi) = R_{nl}(r)Y_{lm}(\theta,\phi)$$

$$-\frac{\hbar^2}{2\mu} \left[\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} - \frac{l(l+1)}{r^2} \right] R_{nl}(r) + V(r) R_{nl}(r) = ER_{nl}(r)$$

Hydrogen atom

- attractive Coulomb potential $V(r) = -\frac{Ze^2}{4\pi\varepsilon_0 r}$
- Differential equation

$$-\frac{\hbar^2}{2\mu} \left[\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} - \frac{l(l+1)}{r^2} \right] R_{nl}(r) - \frac{Ze^2}{4\pi\varepsilon_0 r} R_{nl}(r) = ER_{nl}(r)$$

$$\left[\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} + \frac{2\mu}{\hbar^2}\left(E + \frac{Ze^2}{4\pi\varepsilon_0 r} - \frac{\hbar^2 l(l+1)}{2\mu r^2}\right)\right]R_{nl}(r) = 0$$

Scaling

• choose the scaling factor for length

$$E < 0 \qquad \qquad \frac{1}{x_0} = \frac{\sqrt{8\mu|E|}}{\hbar} = \frac{\sqrt{-8\mu E}}{\hbar}$$

• dimensionless length
$$\rho = \frac{r}{x_0} = \frac{\sqrt{-8\mu E}}{\hbar}r$$

$$\begin{bmatrix} \frac{1}{x_0^2} \frac{\partial^2}{\partial \rho^2} + \frac{1}{x_0^2} \frac{2}{\rho} \frac{\partial}{\partial \rho} + \frac{2\mu}{\hbar^2} \left(E + \frac{Ze^2}{4\pi\varepsilon_0 x_0 \rho} - \frac{\hbar^2 l(l+1)}{2\mu x_0^2 \rho^2} \right) \right] R(\rho) = 0$$
$$\begin{bmatrix} \frac{\partial^2}{\partial \rho^2} + \frac{2}{\rho} \frac{\partial}{\partial \rho} - \frac{1}{4} + \frac{2\mu}{\hbar^2} \frac{x_0 Ze^2}{4\pi\varepsilon_0 \rho} - \frac{l(l+1)}{\rho^2} \right] R(\rho) = 0$$
$$\begin{bmatrix} \frac{\partial^2}{\partial \rho^2} + \frac{2}{\rho} \frac{\partial}{\partial \rho} - \frac{1}{4} + \frac{\lambda}{\rho} - \frac{l(l+1)}{\rho^2} \end{bmatrix} R(\rho) = 0$$

Characteristic length

• characteristic(eigen) length

• fine structure constant

$$\alpha = \frac{e^2}{4\pi\varepsilon_0 c\hbar} = \frac{1}{137}$$

• when
$$\rho \to \infty$$

$$\left[\frac{\partial^2}{\partial \rho^2} + \frac{2}{\rho}\frac{\partial}{\partial \rho} - \frac{1}{4} + \frac{\lambda}{\rho} - \frac{l(l+1)}{\rho^2}\right]R(\rho) = 0$$

$$\longrightarrow \left[\frac{\partial^2}{\partial \rho^2} - \frac{1}{4}\right] R(\rho) = 0$$

$$R(\rho) \rightarrow e^{-\rho/2}$$

• in general $R(\rho) = e^{-\rho/2}G(\rho)$

• when $\rho \rightarrow 0$ $\left| \frac{\partial^2}{\partial \rho^2} + \frac{2}{\rho} \frac{\partial}{\partial \rho} - \frac{1}{4} + \frac{\lambda}{\rho} - \frac{l(l+1)}{\rho^2} \right| R(\rho) = 0$ $\longrightarrow \qquad \left| \frac{\partial^2}{\partial \rho^2} + \frac{2}{\rho} \frac{\partial}{\partial \rho} - \frac{l(l+1)}{\rho^2} \right| R(\rho) = 0$ $R(\rho) \propto \rho^s$ s(s-1)+2s-l(l+1)=0 s(s+1)=l(l+1)s = l or s = -l - 1

• differential equation for G

$$\begin{split} &\left[\frac{\partial^2}{\partial\rho^2} + \frac{2}{\rho}\frac{\partial}{\partial\rho} - \frac{1}{4} + \frac{\lambda}{\rho} - \frac{l(l+1)}{\rho^2}\right]e^{-\rho/2}G(\rho) \\ &= e^{-\rho/2}\frac{\partial^2 G}{\partial\rho^2} - e^{-\rho/2}\frac{\partial G}{\partial\rho} + \frac{1}{4}e^{-\rho/2}G \\ &+ e^{-\rho/2}\frac{2}{\rho}\frac{\partial G}{\partial\rho} - e^{-\rho/2}\frac{1}{\rho}G + \left[-\frac{1}{4} + \frac{\lambda}{\rho} - \frac{l(l+1)}{\rho^2}\right]e^{-\rho/2}G \end{split}$$

$$\frac{\partial^2 G}{\partial \rho^2} - \frac{\partial G}{\partial \rho} + \frac{2}{\rho} \frac{\partial G}{\partial \rho} - \frac{1}{\rho} G + \left[\frac{\lambda}{\rho} - \frac{l(l+1)}{\rho^2}\right] G = 0$$
$$\frac{\partial^2 G}{\partial \rho^2} - \left(1 - \frac{2}{\rho}\right) \frac{\partial G}{\partial \rho} + \left[\frac{\lambda - 1}{\rho} - \frac{l(l+1)}{\rho^2}\right] G = 0$$

 $G(\rho) \propto \rho^l = \rho^l H(\rho)$

• owing to the behavior of R at small ρ

 $\frac{\partial^2}{\partial \rho^2} \rho^l H(\rho) - \left(1 - \frac{2}{\rho}\right) \frac{\partial}{\partial \rho} \rho^l H(\rho) + \left[\frac{\lambda - 1}{\rho} - \frac{l(l+1)}{\rho^2}\right] \rho^l H(\rho) = 0$ $\rho^l \frac{\partial^2 H}{\partial \rho^2} + \frac{2l}{\rho} \rho^l \frac{\partial H}{\partial \rho} + \rho^l \frac{l(l-1)}{\rho^2} H - \left(1 - \frac{2}{\rho}\right) \frac{\partial H}{\partial \rho} - \left(1 - \frac{2}{\rho}\right) \frac{l}{\rho} \rho^l H + \left[\frac{\lambda - 1}{\rho} - \frac{l(l+1)}{\rho^2}\right] \rho^l H = 0$ $\frac{\partial^2 H}{\partial \rho^2} + \left(\frac{2l+2}{\rho} - 1\right) \frac{\partial H}{\partial \rho} + \frac{\lambda - l - 1}{\rho} H = 0$

• We will take the similar approach with that in Chapter IV to discuss the possible eigenvalues

power series expansion

• Here we consider the approach of power series expansion for the differential equation

$$\frac{\partial^2 H}{\partial \rho^2} + \left(\frac{2l+2}{\rho} - 1\right) \frac{\partial H}{\partial \rho} + \frac{\lambda - l - 1}{\rho} H = 0$$

• assuming $H(\rho) = \sum_{k} a_{k} \rho^{k}$

$$\frac{dH}{d\rho} = \sum_{k} ka_{k}\rho^{k-1} \qquad \qquad \frac{d^{2}H}{d\rho^{2}} = \sum_{k} k(k-1)a_{k}\rho^{k-2}$$
$$\sum_{k} k(k-1)a_{k}\rho^{k-2} + \sum_{k} \left(\frac{2l+2}{\rho}-1\right)ka_{k}\rho^{k-1} + \frac{\lambda-l-1}{\rho}\sum_{k} a_{k}\rho^{k} = 0$$
$$\sum_{k} \left[k(k-1)+k(2l+2)\right]a_{k}\rho^{k-2} + \sum_{k} (\lambda-l-1-k)a_{k}\rho^{k-1} = 0$$

recursion formula

• rearrange the order

$$\sum_{k} (k+1)(k+2l+2)a_{k+1}\rho^{k-1} + \sum_{k} (\lambda - l - 1 - k)a_{k}\rho^{k-1} = 0$$

• The coefficients

$$(k+1)(k+2l+2)a_{k+1} + (\lambda - l - 1 - k)a_k = 0$$

$$\frac{a_{k+1}}{a_k} = \frac{k+l+1-\lambda}{(k+1)(k+2l+2)}$$

recursion formula

• when k is large, it behaves as $\frac{a_{k+1}}{a_k} \rightarrow \frac{1}{k}$

$$a_k \approx \left(\frac{1}{k}\right) \left(\frac{1}{k-1}\right) \left(\frac{1}{k-2}\right) \cdots \approx \frac{1}{k!}C$$

$$H(\rho) = \sum_{k} a_{k} \rho^{k} \simeq C \sum_{k} \frac{1}{k!} \rho^{k} = C e^{\rho}$$

in general cases, $R(\rho) \simeq Ce^{\rho}e^{-\frac{\rho}{2}} = Ce^{\frac{\rho}{2}}$

diverges when ρ is large

termination of series

• we want a reasonable solution which is finite at infinite ρ $a_k = 0$ for some k

$$k+l+1-\lambda=0$$

• It restricts the value of λ

$$\lambda = k + l + 1 = n$$

• n is called principle quantum number

• some properties

$$k \ge 0$$
 $n \ge l+1$
 $k = -\mu c^2 \frac{Z^2 \alpha^2}{2n^2}$

Numerical method-l

- another way of scaling, Bohr radius $a_0 = \frac{\hbar^2 4 \pi \varepsilon_0}{\mu e^2}$
- rewrite the equation $\rho = \frac{r}{a_0}$

$$-\frac{\hbar^{2}}{2\mu}\left[\frac{d^{2}}{dr^{2}}+\frac{2}{r}\frac{d}{dr}-\frac{l(l+1)}{r^{2}}\right]R_{nl}(r)-\frac{Ze^{2}}{4\pi\varepsilon_{0}r}R_{nl}(r)=ER_{nl}(r)$$

$$\begin{bmatrix} -\frac{d^2}{dr^2} - \frac{2}{r}\frac{d}{dr} + \frac{l(l+1)}{r^2} \end{bmatrix} R_{nl}(r) - \frac{2\mu Ze^2}{4\pi\varepsilon_0\hbar^2 r} R_{nl}(r) = \frac{2\mu}{\hbar^2} ER_{nl}(r)$$
$$\begin{bmatrix} -\frac{\partial^2}{\partial\rho^2} - \frac{2}{\rho}\frac{\partial}{\partial\rho} - \frac{2Z}{\rho} + \frac{l(l+1)}{\rho^2} \end{bmatrix} R(\rho) = \frac{2\mu a_0^2}{\hbar^2} ER(\rho)$$

Numerical method-2

• normalization condition

$$\int \left| \rho R(\rho) \right|^2 d\rho = \int \left| f \right|^2 d\rho = 1 \qquad f = \rho R(\rho)$$

• The equation for f

$$-\frac{\partial^2}{\partial \rho^2} f(\rho) - \left[\frac{2Z}{\rho} - \frac{l(l+1)}{\rho^2}\right] f(\rho) = \lambda f(\rho)$$

$$\lambda = \frac{2\mu a_0^2}{\hbar^2} E = \frac{E}{R_y} \qquad \qquad R_y = \frac{\mu e^4}{8\varepsilon_0^2 h^2}$$

Numerical method-3

• Define the hermitian operator satisfying

$$\hat{O}|f\rangle = \lambda|f\rangle$$
 $\hat{O} = -\frac{\partial^2}{\partial\rho^2} - \frac{2Z}{\rho} + \frac{l(l+1)}{\rho^2}$

• If write the solution with a column vector with linearly spaced coordinate $\rho_{j+1} - \rho_j = \Delta \rho$

$$f(\rho) = \begin{pmatrix} \rho_1 R(\rho_1) \\ \rho_2 R(\rho_2) \\ \rho_3 R(\rho_3) \\ \vdots \\ \rho_N R(\rho_N) \end{pmatrix} \qquad \frac{d^2}{d\rho^2} = \frac{1}{(\Delta \rho)^2} \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & \cdots & 0 \\ 0 & 1 & -2 & 0 \\ \vdots & \ddots & 1 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$

Numerical method-4

eigenvalues

-0.99937578~ | -0.2499605 ~ |/4 -0.10921206 ~1/9 -0.06246099 ~1/16 -0.03998396 ~1/25 -0.0277305 ~1/36 -0.01921007 ~1/49

mass difference

 the mass of a deutron(lpln) is twice of a proton

- Eigenenergy and transition frequency scale as $\mu = \frac{mM}{m+M} = \frac{m}{1+\frac{m}{M}}$
- small difference of transition energies for a deuterium(epn) and a hydrogen(ep)

Proton size puzzle

- to study the spectrum of a muonic hydrogen (μp)
- muon mass ~ 270 m_e
- a muon orbits much closer than an electron to the hydrogen nucleus, where it is consequently much more sensitive to the size of the proton.

LETTERS

The size of the proton

Randolf Pohl¹, Aldo Antognini¹, François Nez², Fernando D. Amaro³, François Biraben², João M. R. Cardoso³, Daniel S. Covita^{3,4}, Andreas Dax⁵, Satish Dhawan⁵, Luis M. P. Fernandes³, Adolf Giesen⁶†, Thomas Graf⁶, Theodor W. Hänsch¹, Paul Indelicato², Lucile Julien², Cheng-Yang Kao⁷, Paul Knowles⁸, Eric-Olivier Le Bigot², Yi-Wei Liu⁷, José A. M. Lopes³, Livia Ludhova⁸, Cristina M. B. Monteiro³, Françoise Mulhauser⁸†, Tobias Nebel¹, Paul Rabinowitz⁹, Joaquim M. F. dos Santos³, Lukas A. Schaller⁸, Karsten Schuhmann¹⁰, Catherine Schwob², David Taqqu¹¹, João F. C. A. Veloso⁴ & Franz Kottmann¹²

degeneracy

- energy only depends on nn = k + l + 1
- since k is an integer, the number of possible k is n (from l=0, 1,n-1)
- for each l, there are 2l+1 states (m=-l,l)

• total degeneracy
$$\sum_{l=0}^{n-1} 2l + 1 = n^2$$

ground state

$$\frac{a_{k+1}}{a_k} = \frac{k+l}{(k+1)(k+2l+2)}$$

• only a_0 exists radial angular $H(\rho) = 1$ $Y_{00} = \text{cosntant}$ $R(\rho) = e^{-\rho/2}$

Ist excited state

• n=2, l=0	$\frac{a_{k+1}}{a_k} = \frac{k+l-1}{(k+1)(k+2l+2)}$	
$a_0 = 1$ $a_1 = -\frac{1}{2}$ $a_2 = 0$	radial $H(\rho) = 1 - \frac{\rho}{2}$	angular _{Y00}
• n=2, <i>l</i> =1	radial	angular

 $H(\rho) = 1$ Y_{11}, Y_{10}, Y_{1-1}

2nd excited state

 $a_0 = 1$ • n=3, l=0 $\frac{a_{k+1}}{a_k} = \frac{k+l-2}{(k+1)(k+2l+2)}$ $a_1 = -1$ $a_2 = \frac{1}{6}$ radial angular $a_3 = 0$ $H(\rho) = 1 - \rho + \frac{\rho^2}{6}$ Y_{00} • n=3, l=1 $a_0 = 1$ $a_1 = -\frac{1}{4}$ $H(\rho) = 1 - \frac{\rho}{4}$ Y_{11}, Y_{10}, Y_{1-1} $a_2 = 0$

spectrum

n=4 = |=3| = |=2| = |=1| - |=0|n=3 = |=2| = |=1| - |=0|

n=2 === I=I ---- I=0

n=1 _____ l=0 k=0 k=1 k=2 k=3

large degeneracy for 1/r potential

To see this, consider a modification on potential such as

$$V(r) = -\frac{Ze^2}{4\pi\varepsilon_0 r} + \frac{\hbar^2}{2\mu} \frac{g^2}{r^2} = V_0 + \frac{\hbar^2}{2\mu} \frac{g^2}{r^2}$$

• Schrodinger equation becomes

$$-\frac{\hbar^2}{2\mu} \left[\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right] \psi + \frac{1}{2\mu r^2} \left(L^2 + g^2 \right) \psi + V_0(r) \psi = E \psi$$

effect of non 1/r potential

• eigenequation changes to

$$-\frac{\hbar^2}{2\mu}\left[\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} - \frac{l^*(l^*+1)}{r^2}\right]R_{nl}(r) + V_0(r)R_{nl}(r) = ER_{nl}(r)$$

$$l^*(l^*+1) = l(l+1) + g^2$$

energy degeneracy is lifted

$$E = -\mu c^2 \frac{Z^2 \alpha^2}{2n^2} \qquad n = k + l^* + 1 = k - \frac{1}{2} + \sqrt{\left(l + \frac{1}{2}\right)^2 + g^2}$$

existence of a constant of motion

- The large degeneracy arises from the existence of an additional constant of motion except L²
- The operator Lenz vector is defined by

$$\mathbf{A} = \frac{1}{2\mu\alpha} [\mathbf{L} \times \mathbf{p} - \mathbf{p} \times \mathbf{L}] + \frac{\mathbf{r}}{r} \qquad [H, \mathbf{A}] = 0$$

• Physical meaning of A: orientation of the elliptic orbit

associate Lagurre polynomials

• The radial eigenfunctions are called associate Lagurre polynomials

 $H(\rho) = L_{n-l-1}^{(2l+1)}(\rho)$

$$L_n^{\alpha}(\rho) = \sum_{m=0}^{\infty} \begin{pmatrix} n+\alpha \\ n-m \end{pmatrix} \frac{(-\rho)^m}{m!}$$

of a_c

