3D system

2017/4/4

Schrodinger equation in 3D

- in 3D system $\quad H=\frac{\mathbf{p}^{2}}{2 \mu}+V(\mathbf{r})$
- μ mass
- momentum operator in 3D

$$
\mathbf{p}=\left(p_{x}, p_{y}, p_{z}\right)=\left(\frac{\hbar}{i} \frac{\partial}{\partial x}, \frac{\hbar}{i} \frac{\partial}{\partial y}, \frac{\hbar}{i} \frac{\partial}{\partial z}\right)
$$

- Schrodinger equation

$$
-\frac{\hbar^{2}}{2 \mu}\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right] \psi(x, y, z)+V(x, y, z) \psi(x, y, z)=E \psi(x, y, z)
$$

Separable system

- The kinetic energy is additive

$$
\mathbf{p}^{2}=p_{x}^{2}+p_{y}^{2}+p_{z}^{2}
$$

- if potential energy is additive

$$
V(x, y, z)=V_{1}(x)+V_{2}(y)+V_{3}(z)
$$

- motion in additive potential is separable
- In classical mechanics $\mu \frac{d^{2} x}{d t^{2}}=-\frac{\partial V_{1}(x)}{\partial x}$
$\mu \frac{d^{2} y}{d t^{2}}=-\frac{\partial V_{2}(y)}{\partial y}$
$\mu \frac{d^{2} z}{d t^{2}}=-\frac{\partial V_{3}(z)}{\partial z}$

Examples

- particle in a infinite box of dimensions L_{1}, L_{2} and L_{3}

- symmetric harmonic potential in 3D
$V(x, y, z)=\frac{1}{2} m \omega^{2} r^{2}=\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}+z^{2}\right)$

Separable system

- the eigenstate wavefunction

$$
\psi(x, y, z)=u(x) v(y) w(z)
$$

- for each coordinate variable

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial x^{2}} u(x)+V_{1}(x) u(x)=E_{1} u(x) \\
& -\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial y^{2}} v(y)+V_{2}(y) v(y)=E_{2} v(y) \\
& -\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial z^{2}} w(z)+V_{3}(z) w(z)=E_{3} w(z)
\end{aligned}
$$

- The eigenenergy is additive $E=E_{1}+E_{2}+E_{3}$

Central potential

- central potential problem

$$
V(\mathbf{r})=V(r)
$$

separable in spherical coordinate

- kinetic energy in spherical coordinate

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 \mu}\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right]=-\frac{\hbar^{2}}{2 \mu} \nabla^{2} \\
& \nabla^{2} \rightarrow \frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}}\left(\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right) \\
& \nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}
\end{aligned}
$$

Easy way to memorize

$$
\begin{aligned}
& \frac{\partial}{\partial x}=\frac{\partial r}{\partial x} \frac{\partial}{\partial r}+\frac{\partial \theta}{\partial x} \frac{\partial}{\partial \theta}+\frac{\partial \phi}{\partial x} \frac{\partial}{\partial \phi} \\
& \frac{\partial^{2}}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial r}{\partial x} \frac{\partial}{\partial r}+\frac{\partial \theta}{\partial x} \frac{\partial}{\partial \theta}+\frac{\partial \phi}{\partial x} \frac{\partial}{\partial \phi}\right) \\
& =\left(\frac{\partial r}{\partial x}\right)^{2} \frac{\partial^{2}}{\partial r^{2}}+\left(\frac{\partial \theta}{\partial x}\right)^{2} \frac{\partial^{2}}{\partial \theta^{2}}+\left(\frac{\partial \phi}{\partial x}\right)^{2} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{\partial^{2} r}{\partial x^{2}} \frac{\partial}{\partial r}+\frac{\partial^{2} \theta}{\partial x^{2}} \frac{\partial}{\partial \theta}+\frac{\partial^{2} \phi}{\partial x^{2}} \frac{\partial}{\partial \phi} \\
& +2 \frac{\partial r}{\partial x} \frac{\partial \theta}{\partial x} \frac{\partial}{\partial r} \frac{\partial}{\partial \theta}+2 \frac{\partial \theta}{\partial x} \frac{\partial \phi}{\partial x} \frac{\partial}{\partial \theta} \frac{\partial}{\partial \phi}+2 \frac{\partial r}{\partial x} \frac{\partial \phi}{\partial x} \frac{\partial}{\partial r} \frac{\partial}{\partial \phi}
\end{aligned}
$$

2nd derivative terms

$$
\begin{aligned}
& \left.\nabla^{2}=\left[\left(\frac{\partial r}{\partial x}\right)^{2}+\left(\frac{\partial r}{\partial y}\right)^{2}+\left(\frac{\partial r}{\partial z}\right)^{2}\right] \frac{\partial^{2}}{\partial r^{2}}+\left[\left(\frac{\partial \theta}{\partial x}\right)^{2}+\left(\frac{\partial \theta}{\partial y}\right)^{2}+\left(\frac{\partial \theta}{\partial z}\right)^{2}\right] \frac{\partial^{2}}{\partial \theta^{2}}+\left[\left(\frac{\partial \phi}{\partial x}\right)^{2}+\left(\frac{\partial \phi}{\partial y}\right)^{2}+\left(\frac{\partial \phi}{\partial z}\right)^{2}\right] \frac{\partial^{2}}{\partial \phi^{2}}\right] \\
& +\left[\frac{\partial^{2} r}{\partial x^{2}}+\frac{\partial^{2} r}{\partial y^{2}}+\frac{\partial^{2} r}{\partial z^{2}}\right] \frac{\partial}{\partial r}+\left[\frac{\partial^{2} \theta}{\partial x^{2}}+\frac{\partial^{2} \theta}{\partial y^{2}}+\frac{\partial^{2} \theta}{\partial z^{2}}\right] \frac{\partial}{\partial \theta}+\left[\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}\right] \frac{\partial}{\partial \phi} \text { Ist derivative terms } \\
& +2\left[\frac{\partial r}{\partial x} \frac{\partial \theta}{\partial x}+\frac{\partial r}{\partial y} \frac{\partial \theta}{\partial y}+\frac{\partial r}{\partial z} \frac{\partial \theta}{\partial z}\right] \frac{\partial}{\partial r} \frac{\partial}{\partial \theta}+2\left[\frac{\partial \theta}{\partial x} \frac{\partial \phi}{\partial x}+\frac{\partial \theta}{\partial y} \frac{\partial \phi}{\partial y}+\frac{\partial \theta}{\partial z} \frac{\partial \phi}{\partial z}\right] \frac{\partial}{\partial \theta} \frac{\partial}{\partial \phi}+2\left[\frac{\partial r}{\partial x} \frac{\partial \phi}{\partial x}+\frac{\partial r}{\partial y} \frac{\partial \phi}{\partial y}+\frac{\partial r}{\partial z} \frac{\partial \phi}{\partial z}\right] \frac{\partial}{\partial r} \frac{\partial}{\partial \phi}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Jacobian } \\
& \frac{\partial r}{\partial x}=\sin \theta \cos \phi \\
& \frac{\partial r}{\partial y}=\sin \theta \cos \phi \\
& \frac{\partial r}{\partial z}=-\cos \theta \\
& \frac{\partial \theta}{\partial x}=\frac{\cos \theta \cos \phi}{r} \\
& \frac{\partial \theta}{\partial y}=\frac{\cos \theta \sin \phi}{r} \\
& \frac{\partial \theta}{\partial z}=-\frac{\sin \theta}{r} \\
& \frac{\partial \phi}{\partial x}=-\frac{\sin \phi}{r \sin \theta} \\
& \frac{\partial \phi}{\partial y}=\frac{\cos \phi}{r \sin \theta} \\
& \frac{\partial \phi}{\partial z}=0
\end{aligned}
$$

2nd derivative terms

$$
\begin{aligned}
& \left(\frac{\partial r}{\partial x}\right)^{2}+\left(\frac{\partial r}{\partial y}\right)^{2}+\left(\frac{\partial r}{\partial z}\right)^{2}=\sin ^{2} \theta \cos ^{2} \phi+\sin ^{2} \theta \cos ^{2} \phi+\cos ^{2} \theta=1 \\
& \left(\frac{\partial \theta}{\partial x}\right)^{2}+\left(\frac{\partial \theta}{\partial y}\right)^{2}+\left(\frac{\partial \theta}{\partial z}\right)^{2}=\frac{\cos ^{2} \theta \cos ^{2} \phi}{r^{2}}+\frac{\cos ^{2} \theta \sin ^{2} \phi^{2}}{r}+\frac{\sin ^{2} \theta}{r^{2}}=\frac{1}{r^{2}} \\
& \left(\frac{\partial \phi}{\partial x}\right)^{2}+\left(\frac{\partial \phi}{\partial y}\right)^{2}+\left(\frac{\partial \phi}{\partial z}\right)^{2}=\frac{\sin ^{2} \phi}{r^{2} \sin ^{2} \theta}+\frac{\cos ^{2} \phi}{r^{2} \sin ^{2} \theta}=\frac{1}{r^{2} \sin ^{2} \theta}
\end{aligned}
$$

cross terms

$\frac{\partial r}{\partial x} \frac{\partial \theta}{\partial x}+\frac{\partial r}{\partial y} \frac{\partial \theta}{\partial y}+\frac{\partial r}{\partial z} \frac{\partial \theta}{\partial z}=\frac{\sin \theta \cos \theta \cos ^{2} \phi}{r}+\frac{\sin \theta \cos \theta \sin ^{2} \phi}{r}-\frac{\sin \theta \cos \theta}{r}=0$
$\frac{\partial r}{\partial x} \frac{\partial \phi}{\partial x}+\frac{\partial r}{\partial y} \frac{\partial \phi}{\partial y}+\frac{\partial r}{\partial z} \frac{\partial \phi}{\partial z}=-\sin \theta \cos \phi \frac{\sin \phi}{r \sin \theta}+\sin \theta \cos \phi \frac{\cos \phi}{r \sin \theta}=0$
$\frac{\partial \theta}{\partial x} \frac{\partial \phi}{\partial x}+\frac{\partial \theta}{\partial y} \frac{\partial \phi}{\partial y}+\frac{\partial \theta}{\partial z} \frac{\partial \phi}{\partial z}=\frac{\cos \theta \cos \phi}{r} \frac{\sin \phi}{r \sin \theta}+\frac{\cos \theta \sin \phi}{r} \frac{\cos \phi}{r \sin \theta}=0$

Ist derivative terms

$$
\begin{array}{ll}
\frac{\partial^{2} r}{\partial x^{2}}=\frac{y^{2}+z^{2}}{r^{2}} & \frac{\partial^{2} r}{\partial x^{2}}+\frac{\partial^{2} r}{\partial y^{2}}+\frac{\partial^{2} r}{\partial z^{2}}=\frac{2}{r} \\
\frac{\partial^{2} r}{\partial y^{2}}=\frac{x^{2}+z^{2}}{r^{2}} & \frac{\partial^{2} \theta}{\partial x^{2}}+\frac{\partial^{2} \theta}{\partial y^{2}}+\frac{\partial^{2} \theta}{\partial z^{2}}=\frac{\cos \theta}{r^{2} \sin \theta} \\
\frac{\partial^{2} r}{\partial z^{2}}=\frac{x^{2}+y^{2}}{r^{2}} & \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0 \\
\nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \cot \theta \frac{\partial}{\partial \theta} \\
= & \frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{\hbar^{2} r^{2}} L^{2}
\end{array}
$$

$$
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}
$$

Schrodinger equation

$$
-\frac{\hbar^{2}}{2 \mu} \nabla^{2} \psi(r, \theta, \phi)+V(r) \psi(r, \theta, \phi)=E \psi(r, \theta, \phi)
$$

radial part
$-\frac{\hbar^{2}}{2 \mu}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}}\right]+V(r) \psi(r, \theta, \phi)$
$=E \psi(r, \theta, \phi)$

\uparrow

angular parts contain in this term

Separation of variables

- separation of variables

$$
\begin{gathered}
\psi(r, \theta, \phi)=R(r) Y(\theta, \phi) \\
-\frac{\hbar^{2}}{2 \mu}\left[\frac{Y}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial R}{\partial r}\right)+\frac{R}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{R}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right]+V(r) R Y \\
=E R Y \\
-\frac{\hbar^{2}}{2 \mu}\left[\frac{1}{r^{2} R} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial R}{\partial r}\right)+\frac{1}{r^{2} Y \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{1}{r^{2} Y \sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right]+V(r)=E
\end{gathered}
$$

separation constant

$$
\begin{aligned}
& \frac{1}{R} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial R}{\partial r}\right)-\frac{2 \mu r^{2}}{\hbar^{2}}(V-E) \\
& \quad+\frac{1}{Y \sin \theta}\left[\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{1}{\sin \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right]=0 \\
& \frac{1}{R} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial R}{\partial r}\right)-\frac{2 \mu r^{2}}{\hbar^{2}}(V-E)=l(l+1) \\
& \frac{1}{Y \sin \theta}\left[\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{1}{\sin \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right]=-l(l+1)
\end{aligned}
$$

Angular equation

$$
\begin{gathered}
\sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{\partial^{2} Y}{\partial \phi^{2}}=-l(l+1) \sin ^{2} \theta Y \\
Y(\theta, \phi)=\Theta(\theta) \Phi(\phi)
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\frac{1}{\Theta} \sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Theta}{\partial \theta}\right)+l(l+1) \sin ^{2} \theta+\frac{1}{\Phi} \frac{\partial^{2} \Phi}{\partial \phi^{2}}=0}{\frac{1}{\Theta} \sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Theta}{\partial \theta}\right)+l(l+1) \sin ^{2} \theta=m^{2}} \\
& \frac{1}{\Phi} \frac{\partial^{2} \Phi}{\partial \phi^{2}}=-m^{2}
\end{aligned}
$$

φ equation

- equation for φ

$$
\frac{\partial^{2} \Phi}{\partial \phi^{2}}=-m^{2} \Phi
$$

- boundary condition

$$
\Phi(\phi+2 \pi)=\Phi(\phi)
$$

- solution

$$
\Phi=e^{i m p} \quad m=0, \pm 1, \pm 2 \cdots
$$

θ equation

$$
\sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Theta}{\partial \theta}\right)+l(l+1) \sin ^{2} \theta \Theta=m^{2} \Theta
$$

- The solutions are special functions, called associated Legendre functions

$$
\Theta(\theta)=P_{l}^{m}(\cos \theta)
$$

Legendre polynomials

- Associated Legendre functions can be generated from Legendre polynomials P_{I}

$$
P_{l}^{m}(x)=\left(1-x^{2}\right)^{m / 2}\left(\frac{d}{d x}\right)^{m} P_{l}(x) \quad m>0 \quad P_{l}^{-m}(x)=P_{l}^{m}(x)
$$

- Legendre polynomials are

$$
P_{l}(x)=\frac{1}{2^{l} t!}\left(\frac{d}{d x}\right)^{l}\left(x^{2}-1\right)^{l}
$$

called Rodrigues formula

limitations on $/$ and m

- | should be non-negative integers $l=0,1,2, \cdots$
- if $|m|>l \quad P_{l}^{m}(x)=0$
- possible values of $\quad m=-l,-l+1, \cdots, 0, \cdots l-1, l$

$$
\begin{aligned}
& P_{0}=1 \\
& P_{1}=x \\
& P_{2}=\frac{1}{2}\left(3 x^{2}-1\right) \\
& P_{3}=\frac{1}{2}\left(5 x^{3}-3 \mathrm{x}\right) \\
& P_{4}=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) \\
& P_{5}=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right)
\end{aligned}
$$

(a)

(b)

$$
\begin{array}{ll}
P_{0}^{0}=1 & P_{2}^{0}=\frac{1}{2}\left(3 \cos ^{2} \theta-1\right) \\
P_{1}^{\prime}=\sin \theta & P_{3}^{3}=15 \sin \theta\left(1-\cos ^{2} \theta\right) \\
P_{1}^{0}=\cos \theta & P_{3}^{2}=15 \sin ^{2} \theta \cos \theta \\
P_{2}^{2}=3 \sin ^{2} \theta & P_{3}^{1}=\frac{3}{2} \sin \theta\left(5 \cos ^{2} \theta-1\right) \\
P_{2}^{1}=3 \sin \theta \cos \theta & P_{3}^{0}=\frac{1}{2}\left(5 \cos ^{3} \theta-3 \cos \theta\right)
\end{array}
$$

Spherical harmonics

- normalized wavefunctions Y are called spherical harmonics

$$
\begin{gathered}
\int|Y|^{2} \sin \theta d \theta d \phi=1 \\
Y_{l m}(\theta, \phi)=(-1)^{m}\left[\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}\right]^{1 / 2} P_{l}^{m}(\cos \theta) e^{i m \phi}
\end{gathered}
$$

- I: azimuthal quantum number
- m:magnetic quantum number

Introduction of L

$$
\begin{aligned}
\nabla^{2}= & \frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{\hbar^{2} r^{2}} L^{2} \quad L_{z}=\frac{\hbar}{i} \frac{\partial}{\partial \phi} \quad L_{ \pm}=\hbar e^{ \pm i \phi}\left(\pm \frac{\partial}{\partial \theta}+i \cot \theta \frac{\partial}{\partial \phi}\right) \\
L^{2}= & L_{x}^{2}+L_{y}^{2}+L_{z}^{2}=L_{+} L_{-}-\hbar L_{z}+L_{z}^{2} \\
L_{+} L_{-} & =\hbar^{2} e^{i \phi}\left(\frac{\partial}{\partial \theta}+i \cot \theta \frac{\partial}{\partial \phi}\right) e^{-i \phi}\left(-\frac{\partial}{\partial \theta}+i \cot \theta \frac{\partial}{\partial \phi}\right) \\
& =\hbar^{2}\left[-\frac{\partial^{2}}{\partial \theta^{2}}-\cot ^{2} \theta \frac{\partial^{2}}{\partial \phi^{2}}-i \frac{1}{\sin ^{2} \theta} \frac{\partial}{\partial \phi}+\cot \theta\left(-\frac{\partial}{\partial \theta}+i \cot \theta \frac{\partial}{\partial \phi}\right)\right] \\
L^{2}= & \hbar^{2}\left[-\frac{\partial^{2}}{\partial \theta^{2}}-\cot ^{2} \theta \frac{\partial^{2}}{\partial \phi^{2}}-i \frac{1}{\sin ^{2} \theta} \frac{\partial}{\partial \phi}+\cot \theta\left(-\frac{\partial}{\partial \theta}+i \cot \theta \frac{\partial}{\partial \phi}\right)\right]+i \hbar^{2} \frac{\partial}{\partial \phi}-\hbar^{2} \frac{\partial^{2}}{\partial \phi^{2}} \\
= & \hbar^{2}\left[-\frac{\partial^{2}}{\partial \theta^{2}}-\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}-\cot \theta \frac{\partial}{\partial \theta}\right]
\end{aligned}
$$

Schrodinger equation

$$
-\frac{\hbar^{2}}{2 \mu} \nabla^{2} \psi(r, \theta, \phi)+V(r) \psi(r, \theta, \phi)=E \psi(r, \theta, \phi)
$$

Radial part

- use the eigenstate of L^{2}

$$
L^{2}|l, m\rangle=l(l+1) \hbar^{2}|l, m\rangle \quad L^{2} Y_{l m}(\theta, \phi)=l(l+1) \hbar^{2} Y_{l m}(\theta, \phi)
$$

- separation of variables

$$
\begin{gathered}
\psi(r, \theta, \phi)=R_{n l}(r) Y_{l m}(\theta, \phi) \\
-\frac{\hbar^{2}}{2 \mu}\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}-\frac{l(l+1)}{r^{2}}\right] R_{n l}(r)+V(r) R_{n l}(r)=E R_{n l}(r)
\end{gathered}
$$

Hydrogen atom

- attractive Coulomb potential

$$
V(r)=-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}
$$

- Differential equation

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 \mu}\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}-\frac{l(l+1)}{r^{2}}\right] R_{n l}(r)-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r} R_{n l}(r)=E R_{n l}(r) \\
{\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{2 \mu}{\hbar^{2}}\left(E+\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}-\frac{\hbar^{2} l(l+1)}{2 \mu r^{2}}\right)\right] R_{n l}(r)=0}
\end{gathered}
$$

Scaling

- choose the scaling factor for length

$$
E<0 \quad \frac{1}{x_{0}}=\frac{\sqrt{8 \mu|E|}}{\hbar}=\frac{\sqrt{-8 \mu E}}{\hbar}
$$

- dimensionless length $\rho=\frac{r}{x_{0}}=\frac{\sqrt{-8 \mu E}}{\hbar} r$

$$
\begin{gathered}
{\left[\frac{1}{x_{0}^{2}} \frac{\partial^{2}}{\partial \rho^{2}}+\frac{1}{x_{0}^{2}} \frac{2}{\rho} \frac{\partial}{\partial \rho}+\frac{2 \mu}{\hbar^{2}}\left(E+\frac{Z e^{2}}{4 \pi \varepsilon_{0} x_{0} \rho}-\frac{\hbar^{2} l(l+1)}{2 \mu x_{0}^{2} \rho^{2}}\right)\right] R(\rho)=0} \\
{\left[\frac{\partial^{2}}{\partial \rho^{2}}+\frac{2}{\rho} \frac{\partial}{\partial \rho}-\frac{1}{4}+\frac{2 \mu}{\hbar^{2}} \frac{x_{0} Z e^{2}}{4 \pi \varepsilon_{0} \rho}-\frac{l(l+1)}{\rho^{2}}\right] R(\rho)=0} \\
{\left[\frac{\partial^{2}}{\partial \rho^{2}}+\frac{2}{\rho} \frac{\partial}{\partial \rho}-\frac{1}{4}+\frac{\lambda}{\rho}-\frac{l(l+1)}{\rho^{2}}\right] R(\rho)=0}
\end{gathered}
$$

Characteristic length

- characteristic(eigen) length

$$
\begin{aligned}
\lambda & =\frac{2 \mu}{\hbar^{2}} \frac{x_{0} Z e^{2}}{4 \pi \varepsilon_{0}}=\frac{2 \mu}{\hbar^{2}} \frac{Z e^{2}}{4 \pi \varepsilon_{0}} \frac{\hbar}{\sqrt{-8 \mu E}} \\
& =\frac{Z e^{2}}{4 \pi \varepsilon_{0} \hbar} \sqrt{\frac{\mu}{-2 E}} \\
& =Z \alpha \sqrt{\frac{\mu c^{2}}{-2 E}}
\end{aligned}
$$

- fine structure constant

$$
\alpha=\frac{e^{2}}{4 \pi \varepsilon_{0} c \hbar}=\frac{1}{137}
$$

asymptotic behavior

- when $\rho \rightarrow \infty$

$$
\begin{gathered}
{\left[\frac{\partial^{2}}{\partial \rho^{2}}+\frac{2}{\rho} \frac{\partial}{\partial \rho}-\frac{1}{4}+\frac{\lambda}{\rho}-\frac{l(l+1)}{\rho^{2}}\right] R(\rho)=0} \\
\longrightarrow\left[\frac{\partial^{2}}{\partial \rho^{2}}-\frac{1}{4}\right] R(\rho)=0 \\
R(\rho) \rightarrow e^{-\rho / 2}
\end{gathered}
$$

- in general $\quad R(\rho)=e^{-\rho / 2} G(\rho)$

asymptotic behavior

- when $\quad \rho \rightarrow 0$

$$
\begin{gathered}
{\left[\frac{\partial^{2}}{\partial \rho^{2}}+\frac{2}{\rho} \frac{\partial}{\partial \rho}-\frac{1}{4}+\frac{\lambda}{\rho}-\frac{l(l+1)}{\rho^{2}}\right] R(\rho)=0} \\
\longrightarrow\left[\frac{\partial^{2}}{\partial \rho^{2}}+\frac{2}{\rho} \frac{\partial}{\partial \rho}-\frac{l(l+1)}{\rho^{2}}\right] R(\rho)=0 \\
R(\rho) \propto \rho^{s} \\
s(s-1)+2 s-l(l+1)=0 \quad s(s+1)=l(l+1) \\
s=l \quad \text { or } \quad s=-l-1
\end{gathered}
$$

asymptotic behavior

- differential equation for G

$$
\begin{aligned}
& {\left[\frac{\partial^{2}}{\partial \rho^{2}}+\frac{2}{\rho} \frac{\partial}{\partial \rho}-\frac{1}{4}+\frac{\lambda}{\rho}-\frac{l(l+1)}{\rho^{2}}\right] e^{-\rho / 2} G(\rho)} \\
& =e^{-\rho / 2} \frac{\partial^{2} G}{\partial \rho^{2}}-e^{-\rho / 2} \frac{\partial G}{\partial \rho}+\frac{1}{4} e^{-\rho / 2} G \\
& +e^{-\rho / 2} \frac{2}{\rho} \frac{\partial G}{\partial \rho}-e^{-\rho / 2} \frac{1}{\rho} G+\left[-\frac{1}{4}+\frac{\lambda}{\rho}-\frac{l(l+1)}{\rho^{2}}\right] e^{-\rho / 2} G \\
& \quad \frac{\partial^{2} G}{\partial \rho^{2}}-\frac{\partial G}{\partial \rho}+\frac{2}{\rho} \frac{\partial G}{\partial \rho}-\frac{1}{\rho} G+\left[\frac{\lambda}{\rho}-\frac{l(l+1)}{\rho^{2}}\right] G=0 \\
& \quad \frac{\partial^{2} G}{\partial \rho^{2}}-\left(1-\frac{2}{\rho}\right) \frac{\partial G}{\partial \rho}+\left[\frac{\lambda-1}{\rho}-\frac{l(l+1)}{\rho^{2}}\right] G=0
\end{aligned}
$$

asymptotic behavior

- owing to the behavior of R at small ρ

$$
\begin{gathered}
G(\rho) \propto \rho^{l}=\rho^{l} H(\rho) \\
\frac{\partial^{2}}{\partial \rho^{2}} \rho^{l} H(\rho)-\left(1-\frac{2}{\rho}\right) \frac{\partial}{\partial \rho} \rho^{l} H(\rho)+\left[\frac{\lambda-1}{\rho}-\frac{l(l+1)}{\rho^{2}}\right] \rho^{l} H(\rho)=0 \\
\rho^{l} \frac{\partial^{2} H}{\partial \rho^{2}}+\frac{2 l}{\rho} \rho^{l} \frac{\partial H}{\partial \rho}+\rho^{l} \frac{l(l-1)}{\rho^{2}} H-\left(1-\frac{2}{\rho}\right) \frac{\partial H}{\partial \rho}-\left(1-\frac{2}{\rho}\right) \frac{l}{\rho} \rho^{l} H+\left[\frac{\lambda-1}{\rho}-\frac{l(l+1)}{\rho^{2}}\right] \rho^{l} H=0 \\
\frac{\partial^{2} H}{\partial \rho^{2}}+\left(\frac{2 l+2}{\rho}-1\right) \frac{\partial H}{\partial \rho}+\frac{\lambda-l-1}{\rho} H=0
\end{gathered}
$$

- We will take the similar approach with that in Chapter IV to discuss the possible eigenvalues

power series expansion

- Here we consider the approach of power series expansion for the differential equation

$$
\frac{\partial^{2} H}{\partial \rho^{2}}+\left(\frac{2 l+2}{\rho}-1\right) \frac{\partial H}{\partial \rho}+\frac{\lambda-l-1}{\rho} H=0
$$

- assuming

$$
H(\rho)=\sum_{k} a_{k} \rho^{k}
$$

$$
\frac{d H}{d \rho}=\sum_{k} k a_{k} \rho^{k-1} \quad \frac{d^{2} H}{d \rho^{2}}=\sum_{k} k(k-1) a_{k} \rho^{k-2}
$$

$$
\sum_{k} k(k-1) a_{k} \rho^{k-2}+\sum_{k}\left(\frac{2 l+2}{\rho}-1\right) k a_{k} \rho^{k-1}+\frac{\lambda-l-1}{\rho} \sum_{k} a_{k} \rho^{k}=0
$$

$$
\sum_{k}[k(k-1)+k(2 l+2)] a_{k} \rho^{k-2}+\sum_{k}(\lambda-l-1-k) a_{k} \rho^{k-1}=0
$$

recursion formula

- rearrange the order

$$
\sum_{k}(k+1)(k+2 l+2) a_{k+1} \rho^{k-1}+\sum_{k}(\lambda-l-1-k) a_{k} \rho^{k-1}=0
$$

- The coefficients

$$
\begin{gathered}
(k+1)(k+2 l+2) a_{k+1}+(\lambda-l-1-k) a_{k}=0 \\
\frac{a_{k+1}}{a_{k}}=\frac{k+l+1-\lambda}{(k+1)(k+2 l+2)}
\end{gathered}
$$

recursion formula

- when k is large, it behaves as $\quad \frac{a_{k+1}}{a_{k}} \rightarrow \frac{1}{k}$

$$
\begin{aligned}
& a_{k} \approx\left(\frac{1}{k}\right)\left(\frac{1}{k-1}\right)\left(\frac{1}{k-2}\right) \cdots \simeq \frac{1}{k!} C \\
& H(\rho)=\sum_{k} a_{k} \rho^{k} \simeq C \sum_{k} \frac{1}{k!} \rho^{k}=C e^{\rho}
\end{aligned}
$$

in general cases, $\quad R(\rho) \simeq C e^{\rho} e^{-\frac{\rho}{2}}=C e^{\frac{\rho}{2}}$
diverges when
ρ is large

termination of series

- we want a reasonable solution which is finite at infinite $\rho \quad a_{k}=0$ for some k

$$
k+l+1-\lambda=0
$$

- It restricts the value of λ

$$
\lambda=k+l+1=n
$$

- n is called principle quantum number
- some properties

$$
k \geq 0 \quad n \geq l+1
$$

$$
\begin{aligned}
& \lambda=n=Z \alpha \sqrt{\frac{\mu c^{2}}{-2 E}} \\
& E=-\mu c^{2} \frac{Z^{2} \alpha^{2}}{2 n^{2}}
\end{aligned}
$$

Numerical method-I

- another way of scaling, Bohr radius $a_{0}=\frac{\hbar^{2} 4 \pi \varepsilon_{0}}{\mu e^{2}}$
- rewrite the equation $\rho=\frac{r}{a_{0}}$

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 \mu}\left[\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-\frac{l(l+1)}{r^{2}}\right] R_{n l}(r)-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r} R_{n l}(r)=E R_{n l}(r) \\
& {\left[-\frac{d^{2}}{d r^{2}}-\frac{2}{r} \frac{d}{d r}+\frac{l(l+1)}{r^{2}}\right] R_{n l}(r)-\frac{2 \mu Z e^{2}}{4 \pi \varepsilon_{0} \hbar^{2} r} R_{n l}(r)=\frac{2 \mu}{\hbar^{2}} E R_{n l}(r)} \\
& {\left[-\frac{\partial^{2}}{\partial \rho^{2}}-\frac{2}{\rho} \frac{\partial}{\partial \rho}-\frac{2 Z}{\rho}+\frac{l(l+1)}{\rho^{2}}\right] R(\rho)=\frac{2 \mu a_{0}^{2}}{\hbar^{2}} E R(\rho)}
\end{aligned}
$$

Numerical method-2

- normalization condition

$$
\int|\rho R(\rho)|^{2} d \rho=\int|f|^{2} d \rho=1 \quad f=\rho R(\rho)
$$

- The equation for f

$$
\begin{gathered}
-\frac{\partial^{2}}{\partial \rho^{2}} f(\rho)-\left[\frac{2 Z}{\rho}-\frac{l(l+1)}{\rho^{2}}\right] f(\rho)=\lambda f(\rho) \\
\lambda=\frac{2 \mu a_{0}^{2}}{\hbar^{2}} E=\frac{E}{R_{y}} \quad R_{y}=\frac{\mu e^{4}}{8 \varepsilon_{0}^{2} h^{2}}
\end{gathered}
$$

Numerical method-3

- Define the hermitian operator satisfying

$$
\hat{o}|f\rangle=\lambda|f\rangle \quad \hat{o}=-\frac{\partial^{2}}{\partial \rho^{2}}-\frac{2 Z}{\rho}+\frac{l(l+1)}{\rho^{2}}
$$

- If write the solution with a column vector with linearly spaced coordinate $\rho_{j+1}-\rho_{j}=\Delta \rho$

$$
f(\rho)=\left(\begin{array}{c}
\rho_{1} R\left(\rho_{1}\right) \\
\rho_{2} R\left(\rho_{2}\right) \\
\rho_{3} R\left(\rho_{3}\right) \\
\vdots \\
\rho_{N} R\left(\rho_{N}\right)
\end{array}\right) \quad \frac{d^{2}}{d \rho^{2}}=\frac{1}{(\Delta \rho)^{2}}\left(\begin{array}{ccccc}
-2 & 1 & 0 & & 0 \\
1 & -2 & 1 & \cdots & 0 \\
0 & 1 & -2 & & 0 \\
& \vdots & & \ddots & 1 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

Numerical method-4

eigenvalues

-0.99937578~
$-0.2499605 \sim 1 / 4$
$-0.10921206 \sim 1 / 9$
$-0.06246099 \sim 1 / 16$
$-0.03998396 \sim 1 / 25$
$-0.0277305 \sim 1 / 36$
$-0.01921007 \sim 1 / 49$

mass difference

- the mass of a deutron(IpIn) is twice of a proton
- Eigenenergy and transition frequency scale as

$$
\mu=\frac{m M}{m+M}=\frac{m}{1+\frac{m}{M}}
$$

- small difference of transition energies for a deuterium(epn) and a hydrogen(ep)

Proton size puzzle

- to study the spectrum of a muonic hydrogen ($\mu \mathrm{P}$)
- muon mass $\sim 270 \mathrm{me}_{\mathrm{e}}$
- a muon orbits much closer than an electron to the hydrogen nucleus, where it is consequently much more sensitive to the size of the proton.

The size of the proton

Randolf Pohl ${ }^{1}$, Aldo Antognini ${ }^{1}$, François Nez^{2}, Fernando D. Amaro ${ }^{3}$, François Biraben ${ }^{2}$, João M. R. Cardoso ${ }^{3}$, Daniel S. Covita ${ }^{3,4}$, Andreas Dax ${ }^{5}$, Satish Dhawan ${ }^{5}$, Luis M. P. Fernandes ${ }^{3}$, Adolf Giesen ${ }^{6} \dagger$, Thomas Graf ${ }^{6}$, Theodor W. Hänsch ${ }^{1}$, Paul Indelicato ${ }^{2}$, Lucile Julien ${ }^{2}$, Cheng-Yang Kao ${ }^{7}$, Paul Knowles ${ }^{8}$, Eric-Olivier Le Bigot ${ }^{2}$, Yi-Wei Liu ${ }^{7}$, José A. M. Lopes ${ }^{3}$, Livia Ludhova ${ }^{8}$, Cristina M. B. Monteiro ${ }^{3}$, Françoise Mulhauser ${ }^{8} \dagger$, Tobias Nebel ${ }^{1}$, Paul Rabinowitz ${ }^{9}$, Joaquim M. F. dos Santos ${ }^{3}$, Lukas A. Schaller ${ }^{8}$, Karsten Schuhmann ${ }^{10}$, Catherine Schwob ${ }^{2}$, David Taqqu ${ }^{11}$, João F. C. A. Veloso ${ }^{4}$ \& Franz Kottmann ${ }^{12}$

degeneracy

- energy only depends on n

$$
n=k+l+1
$$

- since k is an integer, the number of possible k is n (from $l=0,1, \ldots . n-1$)
- for each l, there are $2 l+1$ states ($m=-l, \ldots . l$)
- total degeneracy

$$
\sum_{l=0}^{n-1} 2 l+1=n^{2}
$$

ground state

- $n=1, l=0$

$$
\frac{a_{k+1}}{a_{k}}=\frac{k+l}{(k+1)(k+2 l+2)}
$$

- only a_{0} exists
radial

$$
\begin{array}{ll}
H(\rho)=1 & Y_{00}=\operatorname{cosntant} \\
R(\rho)=e^{-\rho / 2}
\end{array}
$$

angular

Ist excited state

- $n=2, l=0$

$$
\frac{a_{k+1}}{a_{k}}=\frac{k+l-1}{(k+1)(k+2 l+2)}
$$

$$
a_{0}=1
$$

$$
a_{1}=-\frac{1}{2}
$$

radial
angular
$H(\rho)=1-\frac{\rho}{2}$
Y_{00}

- $n=2,1=1$

$$
\begin{array}{ll}
\text { radial } & \text { angular } \\
H(\rho)=1 & Y_{11}, Y_{10}, Y_{1-1}
\end{array}
$$

2nd excited state

- $n=3, l=0$

$$
\begin{array}{lcc}
a_{0}=1 & \frac{a_{k+1}}{a_{k}}=\frac{k+l-2}{(k+1)(k+2 l+2)} \\
a_{1}=-1 & \text { radial } & \text { angular } \\
a_{2}=\frac{1}{6} & H(\rho)=1-\rho+\frac{\rho^{2}}{6} & Y_{00} \\
a_{3}=0 & H(\rho)=1-\frac{\rho}{4} & Y_{11}, Y_{10}, Y_{1-1} \\
a_{0}=1 & \\
a_{1}=-\frac{1}{4} & & \\
a_{2}=0 & &
\end{array}
$$

- $n=3,1=1$

spectrum

$$
\begin{aligned}
& \mathrm{n}=2 \text { " } \mathrm{I}=\mathrm{l} \text { —— } \mathrm{l}=0 \\
& \mathrm{n}=\mathrm{I} \quad ـ_{\mathrm{l}}^{\mathrm{l}} \mathrm{l}=0 \\
& \mathrm{k}=0 \quad \mathrm{k}=\mathrm{l} \quad \mathrm{k}=2 \quad \mathrm{k}=3
\end{aligned}
$$

large degeneracy for I/r potential

- To see this, consider a modification on potential such as

$$
V(r)=-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}+\frac{\hbar^{2}}{2 \mu} \frac{g^{2}}{r^{2}}=V_{0}+\frac{\hbar^{2}}{2 \mu} \frac{g^{2}}{r^{2}}
$$

- Schrodinger equation becomes

$$
-\frac{\hbar^{2}}{2 \mu}\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}\right] \psi+\frac{1}{2 \mu r^{2}}\left(L^{2}+g^{2}\right) \psi+V_{0}(r) \psi=E \psi
$$

effect of non I/r potential

- eigenequation changes to

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 \mu}\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}-\frac{l^{*}\left(l^{*}+1\right)}{r^{2}}\right] R_{n l}(r)+V_{0}(r) R_{n l}(r)=E R_{n l}(r) \\
l^{*}\left(l^{*}+1\right)=l(l+1)+g^{2}
\end{gathered}
$$

- energy degeneracy is lifted

$$
E=-\mu c^{2} \frac{Z^{2} \alpha^{2}}{2 n^{2}} \quad n=k+l^{*}+1=k-\frac{1}{2}+\sqrt{\left(l+\frac{1}{2}\right)^{2}+g^{2}}
$$

existence of a constant of motion

- The large degeneracy arises from the existence of an additional constant of motion except L^{2}
- The operator Lenz vector is defined by

$$
\mathbf{A}=\frac{1}{2 \mu \alpha}[\mathbf{L} \times \mathbf{p}-\mathbf{p} \times \mathbf{L}]+\frac{\mathbf{r}}{r} \quad[H, \mathbf{A}]=0
$$

- Physical meaning of A : orientation of the elliptic orbit

$$
\infty
$$

associate Lagurre polynomials

- The radial eigenfunctions are called associate Lagurre polynomials

$$
\begin{gathered}
H(\rho)=L_{n-l-1}^{(2 l+1)}(\rho) \\
L_{n}^{\alpha}(\rho)=\sum_{m=0}\binom{n+\alpha}{n-m} \frac{(-\rho)^{m}}{m!}
\end{gathered}
$$

