one-electron atoms

2018/3/I5

Hydrogen spectral series

https://en.wikipedia.org/wiki/File:Hydrogen_spectrum.svg
https://franklyandjournal.wordpress.com/2016/07/I8/hydrogen-spectrum/

Wavelength $/ n m$
Balmer Series for H

$$
\frac{1}{\lambda}=R_{H}\left(\frac{1}{2^{2}}-\frac{1}{n^{2}}\right) \quad \begin{gathered}
\text { Rydberg constant } \\
R_{H}=10967757.6 \pm 1.2 \mathrm{~m}^{-1}
\end{gathered}
$$

Photon emission spectra of excited hydrogen

Quantization of angular momentum

- Bohr postulate, 1913
- for circular orbit, angular momentum takes on values of

$$
L=n \hbar
$$

- Atoms are observed stable and the total energy remains constant

Bohr's model

- The forces are balanced

$$
\frac{Z e^{2}}{4 \pi \varepsilon_{0} r^{2}}=m \frac{v^{2}}{r}
$$

- apply quantization condition $m v r=n \hbar$

$$
\frac{Z e^{2}}{4 \pi \varepsilon_{0}}=m v^{2} r=\frac{n^{2} \hbar^{2}}{m r}
$$

- orbit radius

$$
r=4 \pi \varepsilon_{0} \frac{n^{2} \hbar^{2}}{m Z e^{2}}
$$

$$
r=5.3 \times 10^{-11} \mathrm{~m} \quad(Z=1) \quad \text { Bohr radius }
$$

Bohr's model

- energy of circular orbits

$$
\begin{aligned}
K & =\frac{1}{2} m v^{2} \\
V & =-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}=-2 K
\end{aligned}
$$

- Quantization of energy

$$
E=K+V=-\frac{V}{2}=-\frac{Z e^{2}}{8 \pi \varepsilon_{0} r}=-\frac{m}{2 \hbar^{2}}\left(\frac{Z e^{2}}{4 \pi \varepsilon_{0}}\right)^{2} \frac{1}{n^{2}}
$$

atomic structure

- A dimensionless "magic" constant relating h, c, e and ε_{0}

$$
\alpha=\frac{e^{2}}{4 \pi \varepsilon_{0} \hbar c} \sim \frac{1}{137}
$$

- in terms of α

$$
\begin{gathered}
\text { Of } \alpha \\
E=-\frac{1}{2} \frac{m Z^{2} \alpha^{2} c^{2}}{n^{2}}=-R_{y} \frac{Z^{2}}{n^{2}} \\
r=\frac{\hbar}{m c Z \alpha} n^{2}=\frac{n^{2}}{Z} a_{0}
\end{gathered}
$$

- Rydberg energy $\quad R_{y}=\frac{1}{2} m \alpha^{2} c^{2}=13.6 \mathrm{eV}$
- Bohr radius $a_{0}=0.053 \mathrm{~nm}$

reduced mass

- the one-electron atom contains two particles

Sommerfeld rule

- For any physical system in which the coordinate are periodic functions of time, there exists a quantum condition for each coordinate

$$
\oint p_{q} d q=n_{q} h
$$

- When choosing the angular coordinate

$$
\oint p_{q} d q \rightarrow \oint L d \theta \quad L=n \hbar
$$

application to SHO

- the SHO is a periodic motion.
- With constant energy, it goes in an elliptical trajectory in phase space
- The quantum condition requires that elipse area is $n h$
- area $=\pi x_{0} p_{0}=\pi \sqrt{2 E / k} \sqrt{2 m E}$

$$
=2 \pi E / \omega
$$

- We get energy quantization

$$
E=n \hbar \omega
$$

interpretation of the rule

- It describes the standing wave condition

$$
\phi_{1}+\phi_{2}=2 n \pi \quad \frac{L_{1}}{\lambda}+\frac{L_{2}}{\lambda}=n
$$

- If velocity changes

$$
\frac{L_{1}}{\lambda_{1}}+\frac{L_{2}}{\lambda_{2}}=n
$$

- Apply de Broglie postulate

$$
p_{1} L_{1}+p_{2} L_{2}=n h
$$

$$
\sum_{i} p_{i} L_{i}=n h
$$

Schrodinger equation in 3D

- in 3D system $\quad H=\frac{\mathbf{p}^{2}}{2 \mu}+V(\mathbf{r})$
- μ mass
- momentum operator in 3D

$$
\mathbf{p}=\left(p_{x}, p_{y}, p_{z}\right)=\left(\frac{\hbar}{i} \frac{\partial}{\partial x}, \frac{\hbar}{i} \frac{\partial}{\partial y}, \frac{\hbar}{i} \frac{\partial}{\partial z}\right)
$$

- Schrodinger equation

$$
-\frac{\hbar^{2}}{2 \mu}\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right] \psi(x, y, z)+V(x, y, z) \psi(x, y, z)=E \psi(x, y, z)
$$

Central potential

- central potential problem

$$
V(\mathbf{r})=V(r)
$$

separable in spherical coordinate

- kinetic energy in spherical coordinate

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 \mu}\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right]=-\frac{\hbar^{2}}{2 \mu} \nabla^{2} \\
& \nabla^{2} \rightarrow \frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}}\left(\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right) \\
& \nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}
\end{aligned}
$$

Easy way to memorize

$$
\begin{aligned}
& \frac{\partial}{\partial x}=\frac{\partial r}{\partial x} \frac{\partial}{\partial r}+\frac{\partial \theta}{\partial x} \frac{\partial}{\partial \theta}+\frac{\partial \phi}{\partial x} \frac{\partial}{\partial \phi} \\
& \frac{\partial^{2}}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial r}{\partial x} \frac{\partial}{\partial r}+\frac{\partial \theta}{\partial x} \frac{\partial}{\partial \theta}+\frac{\partial \phi}{\partial x} \frac{\partial}{\partial \phi}\right) \\
& =\left(\frac{\partial r}{\partial x}\right)^{2} \frac{\partial^{2}}{\partial r^{2}}+\left(\frac{\partial \theta}{\partial x}\right)^{2} \frac{\partial^{2}}{\partial \theta^{2}}+\left(\frac{\partial \phi}{\partial x}\right)^{2} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{\partial^{2} r}{\partial x^{2}} \frac{\partial}{\partial r}+\frac{\partial^{2} \theta}{\partial x^{2}} \frac{\partial}{\partial \theta}+\frac{\partial^{2} \phi}{\partial x^{2}} \frac{\partial}{\partial \phi} \\
& +2 \frac{\partial r}{\partial x} \frac{\partial \theta}{\partial x} \frac{\partial}{\partial r} \frac{\partial}{\partial \theta}+2 \frac{\partial \theta}{\partial x} \frac{\partial \phi}{\partial x} \frac{\partial}{\partial \theta} \frac{\partial}{\partial \phi}+2 \frac{\partial r}{\partial x} \frac{\partial \phi}{\partial x} \frac{\partial}{\partial r} \frac{\partial}{\partial \phi}
\end{aligned}
$$

2nd derivative terms

$$
\begin{aligned}
& \nabla^{2}=\left[\left(\frac{\partial r}{\partial x}\right)^{2}+\left(\frac{\partial r}{\partial y}\right)^{2}+\left(\frac{\partial r}{\partial z}\right)^{2}\right] \frac{\partial^{2}}{\partial r^{2}}+\left[\left(\frac{\partial \theta}{\partial x}\right)^{2}+\left(\frac{\partial \theta}{\partial y}\right)^{2}+\left(\frac{\partial \theta}{\partial z}\right)^{2}\right] \frac{\partial^{2}}{\partial \theta^{2}}+\left[\left(\frac{\partial \phi}{\partial x}\right)^{2}+\left(\frac{\partial \phi}{\partial y}\right)^{2}+\left(\frac{\partial \phi}{\partial z}\right)^{2}\right] \frac{\partial^{2}}{\partial \phi^{2}} \\
& +\left[\frac{\partial^{2} r}{\partial x^{2}}+\frac{\partial^{2} r}{\partial y^{2}}+\frac{\partial^{2} r}{\partial z^{2}}\right] \frac{\partial}{\partial r}+\left[\frac{\partial^{2} \theta}{\partial x^{2}}+\frac{\partial^{2} \theta}{\partial y^{2}}+\frac{\partial^{2} \theta}{\partial z^{2}}\right] \frac{\partial}{\partial \theta}+\left[\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}\right] \frac{\partial}{\partial \phi} \text { I st derivative terms } \\
& +2\left[\frac{\partial r}{\partial x} \frac{\partial \theta}{\partial x}+\frac{\partial r}{\partial y} \frac{\partial \theta}{\partial y}+\frac{\partial r}{\partial z} \frac{\partial \theta}{\partial z}\right] \frac{\partial}{\partial r} \frac{\partial}{\partial \theta}+2\left[\frac{\partial \theta}{\partial x} \frac{\partial \phi}{\partial x}+\frac{\partial \theta}{\partial y} \frac{\partial \phi}{\partial y}+\frac{\partial \theta}{\partial z} \frac{\partial \phi}{\partial z}\right] \frac{\partial}{\partial \theta} \frac{\partial}{\partial \phi}+2\left[\frac{\partial r}{\partial x} \frac{\partial \phi}{\partial x}+\frac{\partial r}{\partial y} \frac{\partial \phi}{\partial y}+\frac{\partial r}{\partial z} \frac{\partial \phi}{\partial z}\right] \frac{\partial}{\partial r} \frac{\partial}{\partial \phi}
\end{aligned}
$$

cross terms $=0$

$$
\begin{aligned}
& \frac{\partial r}{\partial x}=\sin \theta \cos \phi \\
& \frac{\partial r}{\partial y}=\sin \theta \cos \phi \\
& \frac{\partial r}{\partial z}=-\cos \theta \\
& \frac{\partial \theta}{\partial x}=\frac{\cos \theta \cos \phi}{r} \\
& \frac{\partial \theta}{\partial y}=\frac{\cos \theta \sin \phi}{r} \\
& \frac{\partial \theta}{\partial z}=-\frac{\sin \theta}{r} \\
& \frac{\partial \phi}{\partial x}=-\frac{\sin \phi}{r \sin \theta} \\
& \frac{\partial \phi}{\partial y}=\frac{\cos \phi}{r \sin \theta} \\
& \frac{\partial \phi}{\partial z}=0
\end{aligned}
$$

2nd derivative terms

$$
\begin{aligned}
& \left(\frac{\partial r}{\partial x}\right)^{2}+\left(\frac{\partial r}{\partial y}\right)^{2}+\left(\frac{\partial r}{\partial z}\right)^{2}=\sin ^{2} \theta \cos ^{2} \phi+\sin ^{2} \theta \cos ^{2} \phi+\cos ^{2} \theta=1 \\
& \left(\frac{\partial \theta}{\partial x}\right)^{2}+\left(\frac{\partial \theta}{\partial y}\right)^{2}+\left(\frac{\partial \theta}{\partial z}\right)^{2}=\frac{\cos ^{2} \theta \cos ^{2} \phi}{r^{2}}+\frac{\cos ^{2} \theta \sin ^{2} \phi}{r}+\frac{\sin ^{2} \theta}{r^{2}}=\frac{1}{r^{2}} \\
& \left(\frac{\partial \phi}{\partial x}\right)^{2}+\left(\frac{\partial \phi}{\partial y}\right)^{2}+\left(\frac{\partial \phi}{\partial z}\right)^{2}=\frac{\sin ^{2} \phi}{r^{2} \sin ^{2} \theta}+\frac{\cos ^{2} \phi}{r^{2} \sin ^{2} \theta}=\frac{1}{r^{2} \sin ^{2} \theta}
\end{aligned}
$$

cross terms

$\frac{\partial r}{\partial x} \frac{\partial \theta}{\partial x}+\frac{\partial r}{\partial y} \frac{\partial \theta}{\partial y}+\frac{\partial r}{\partial z} \frac{\partial \theta}{\partial z}=\frac{\sin \theta \cos \theta \cos ^{2} \phi}{r}+\frac{\sin \theta \cos \theta \sin ^{2} \phi}{r}-\frac{\sin \theta \cos \theta}{r}=0$
$\frac{\partial r}{\partial x} \frac{\partial \phi}{\partial x}+\frac{\partial r}{\partial y} \frac{\partial \phi}{\partial y}+\frac{\partial r}{\partial z} \frac{\partial \phi}{\partial z}=-\sin \theta \cos \phi \frac{\sin \phi}{r \sin \theta}+\sin \theta \cos \phi \frac{\cos \phi}{r \sin \theta}=0$
$\frac{\partial \theta}{\partial x} \frac{\partial \phi}{\partial x}+\frac{\partial \theta}{\partial y} \frac{\partial \phi}{\partial y}+\frac{\partial \theta}{\partial z} \frac{\partial \phi}{\partial z}=\frac{\cos \theta \cos \phi}{r} \frac{\sin \phi}{r \sin \theta}+\frac{\cos \theta \sin \phi}{r} \frac{\cos \phi}{r \sin \theta}=0$

Ist derivative terms

$$
\begin{array}{ll}
\frac{\partial^{2} r}{\partial x^{2}}=\frac{y^{2}+z^{2}}{r^{2}} & \frac{\partial^{2} r}{\partial x^{2}}+\frac{\partial^{2} r}{\partial y^{2}}+\frac{\partial^{2} r}{\partial z^{2}}=\frac{2}{r} \\
\frac{\partial^{2} r}{\partial y^{2}}=\frac{x^{2}+z^{2}}{r^{2}} & \frac{\partial^{2} \theta}{\partial x^{2}}+\frac{\partial^{2} \theta}{\partial y^{2}}+\frac{\partial^{2} \theta}{\partial z^{2}}=\frac{\cos \theta}{r^{2} \sin \theta} \\
\frac{\partial^{2} r}{\partial z^{2}}=\frac{x^{2}+y^{2}}{r^{2}} & \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0 \\
\nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \cot \theta \frac{\partial}{\partial \theta} \\
= & \frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{\hbar^{2} r^{2}} L^{2} \\
\nabla^{2}= & \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}
\end{array}
$$

Schrodinger equation

$$
-\frac{\hbar^{2}}{2 \mu} \nabla^{2} \psi(r, \theta, \phi)+V(r) \psi(r, \theta, \phi)=E \psi(r, \theta, \phi)
$$

$$
-\frac{\hbar^{2}}{2 \mu}[\frac{1}{\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)} \overbrace{\left.+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}}\right]}^{\text {radial part }}+V(r) \psi(r, \theta, \phi)
$$

$=E \psi(r, \theta, \phi)$

angular parts contain in this term

Separation of variables

- separation of variables

$$
\begin{aligned}
& \psi(r, \theta, \phi)=R(r) Y(\theta, \phi) \\
& -\frac{\hbar^{2}}{2 \mu}\left[\frac{Y}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{R}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{R}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right]+V(r) R Y \\
& =E R Y \\
& -\frac{\hbar^{2}}{2 \mu}\left[\frac{1}{r^{2} R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\frac{1}{r^{2} Y \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{1}{r^{2} Y \sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right]+V(r)=E
\end{aligned}
$$

separation constant

$$
\begin{aligned}
& \frac{1}{R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)-\frac{2 \mu r^{2}}{\hbar^{2}}(V-E) \\
& +\frac{1}{Y \sin \theta}\left[\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{1}{\sin \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right]=0 \\
& \frac{1}{R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)-\frac{2 \mu r^{2}}{\hbar^{2}}(V-E)=l(l+1) \\
& \frac{1}{Y \sin \theta}\left[\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{1}{\sin \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right]=-l(l+1)
\end{aligned}
$$

Here we choose the constant to be $l(l+1)$

Angular equation

$$
\begin{gathered}
\sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{\partial^{2} Y}{\partial \phi^{2}}=-l(l+1) \sin ^{2} \theta Y \\
Y(\theta, \phi)=\Theta(\theta) \Phi(\phi)
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\frac{1}{\Theta} \sin \theta \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+l(l+1) \sin ^{2} \theta+\frac{1}{\Phi} \frac{d^{2} \Phi}{d \phi^{2}}=0}{\frac{1}{\Theta} \sin \theta \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+l(l+1) \sin ^{2} \theta=m^{2}} \\
& \frac{1}{\Phi} \frac{d^{2} \Phi}{d \phi^{2}}=-m^{2}
\end{aligned}
$$

Here we choose the constant to be m^{2}

φ equation

- equation for φ

$$
\frac{d^{2} \Phi}{d \phi^{2}}=-m^{2} \Phi
$$

- boundary condition

$$
\Phi(\phi+2 \pi)=\Phi(\phi)
$$

- solution

$$
\Phi=e^{i m \phi}
$$

$$
m=0, \pm 1, \pm 2 \cdots
$$

θ equation

$$
\sin \theta \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+l(l+1) \sin ^{2} \theta \Theta=m^{2} \Theta
$$

- let $x=\cos \theta$

$$
\frac{d}{d x}=-\frac{1}{\sin \theta} \frac{d}{d \theta}
$$

$$
\frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d \Theta}{d x}\right]+l(l+1) \Theta=m^{2} \Theta
$$

- The solutions are special functions, called associated Legendre functions

$$
\Theta(\theta)=P_{l}^{m}(\cos \theta)
$$

Legendre polynomials

- Associated Legendre functions can be generated from Legendre polynomials P_{l}

$$
P_{l}^{m}(x)=\left(1-x^{2}\right)^{m / 2}\left(\frac{d}{d x}\right)^{m} P_{l}(x) \quad m>0 \quad P_{l}^{-m}(x)=P_{l}^{m}(x)
$$

- Legendre polynomials are

$$
P_{l}(x)=\frac{1}{2^{l} l!}\left(\frac{d}{d x}\right)^{l}\left(x^{2}-1\right)^{l}
$$

called Rodrigues formula

- It is easy to check $P_{1}(x)$ satisfies

$$
\begin{array}{ll}
& \frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d P_{l}}{d x}\right]+l(l+1) P_{l}=0 \\
{\left[\left(1-x^{2}\right), \frac{d}{d x}\right]=} & 2 x
\end{array} \begin{aligned}
{\left[\left(1-x^{2}\right),\left(\frac{d}{d x}\right)^{l}\right] } & =\left[\left(1-x^{2}\right),\left(\frac{d}{d x}\right)^{l-1}\right]\left(\frac{d}{d x}\right)+\left(\frac{d}{d x}\right)^{l-1}\left[\left(1-x^{2}\right),\left(\frac{d}{d x}\right)\right] \\
& =\left[\left(1-x^{2}\right),\left(\frac{d}{d x}\right)^{l-1}\right]\left(\frac{d}{d x}\right)+2 x\left(\frac{d}{d x}\right)^{l-1}+2(l-1)\left(\frac{d}{d x}\right)^{l-2} \\
& =2 l x\left(\frac{d}{d x}\right)^{l-1}+(l-1) l\left(\frac{d}{d x}\right)^{l-2} \\
& =2 l\left(\frac{d}{d x}\right)^{l-1} x-(l-1) l\left(\frac{d}{d x}\right)^{l-2} \\
x\left(\frac{d}{d x}\right)^{l-1}=\left(\frac{d}{d x}\right)^{l-1} x-(l-1)\left(\frac{d}{d x}\right)^{l-2} & \quad\left[A, B^{n}\right]=n[A, B] B^{n-1} \\
& \text { if }[A, B]=\text { constant }
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d}{d x}\right] \frac{d^{l}}{d x^{l}} & =\frac{d}{d x} \frac{d^{l+1}}{d x^{l+1}}\left(1-x^{2}\right)+\frac{d}{d x}\left[2(l+1)\left(\frac{d}{d x}\right)^{l} x-l(l+1)\left(\frac{d}{d x}\right)^{l-1}\right] \\
& =\frac{d^{l+2}}{d x^{l+2}}\left(1-x^{2}\right)+2(l+1)\left(\frac{d}{d x}\right)^{l+1} x-l(l+1)\left(\frac{d}{d x}\right)^{l}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d}{d x}\right] \frac{d^{l}}{d x^{l}}\left(1-x^{2}\right)^{l} & =\frac{d^{l+2}}{d x^{l+2}}\left(1-x^{2}\right)^{l+1}+2(l+1)\left(\frac{d}{d x}\right)^{l+1} x\left(1-x^{2}\right)^{l}-l(l+1)\left(\frac{d}{d x}\right)^{l}\left(1-x^{2}\right)^{l} \\
& =-2(l+1)\left(\frac{d}{d x}\right)^{l+1} x\left(1-x^{2}\right)^{l}+2(l+1)\left(\frac{d}{d x}\right)^{l+1} x\left(1-x^{2}\right)^{l}-l(l+1)\left(\frac{d}{d x}\right)^{l}\left(1-x^{2}\right)^{l} \\
& =-l(l+1)\left(\frac{d}{d x}\right)^{l}\left(1-x^{2}\right)^{l}
\end{aligned}
$$

limitations on I and m

- I should be non-negative integers $l=0,1,2, \cdots$
- if $|m|>l \quad P_{l}^{m}(x)=0$
- possible values of

$$
m=-l,-l+1, \cdots, 0, \cdots l-1, l
$$

Legendre polynomials

$$
\begin{aligned}
& P_{0}(x)=1 \\
& P_{1}(x)=x \\
& P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) \\
& P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
& P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) \\
& P_{5}(x)=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right) \\
& P_{6}(x)=\frac{1}{16}\left(231 x^{6}-315 x^{4}+105 x^{2}-5\right) .
\end{aligned}
$$

$$
\begin{aligned}
& P_{0}^{0}(\cos \theta)=1 \\
& P_{1}^{0}(\cos \theta)=\cos \theta \\
& P_{1}^{1}(\cos \theta)=-\sin \theta \\
& P_{2}^{0}(\cos \theta)=\frac{1}{2}\left(3 \cos ^{2} \theta-1\right) \\
& P_{2}^{1}(\cos \theta)=-3 \cos \theta \sin \theta \\
& P_{2}^{2}(\cos \theta)=3 \sin ^{2} \theta \\
& P_{3}^{0}(\cos \theta)=\frac{1}{2}\left(5 \cos ^{3} \theta-3 \cos \theta\right) \\
& P_{3}^{1}(\cos \theta)=-\frac{3}{2}\left(5 \cos ^{2} \theta-1\right) \sin \theta \\
& P_{3}^{2}(\cos \theta)=15 \cos \theta \sin ^{2} \theta \\
& P_{3}^{3}(\cos \theta)=-15 \sin ^{3} \theta \\
& P_{4}^{0}(\cos \theta)=\frac{1}{8}\left(35 \cos ^{4} \theta-30 \cos ^{2} \theta+3\right)
\end{aligned}
$$

Spherical harmonics

- normalized wavefunctions Y are called spherical harmonics

$$
\begin{gathered}
\int|Y|^{2} \sin \theta d \theta d \phi=1 \\
Y_{m m}(\theta, \phi)=(-1)^{m}\left[\frac{2 l+1(l-m)!}{4 \pi}(l+m)!\right]_{l}^{12} P_{l}^{m(\cos \theta) e^{m m p}}
\end{gathered}
$$

- l: azimuthal quantum number
- m:magnetic quantum number

Hydrogen atom

- attractive Coulomb potential

$$
V(r)=-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}
$$

- Differential equation

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 \mu}\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}-\frac{l(l+1)}{r^{2}}\right] R_{n l}(r)-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r} R_{n l}(r)=E R_{n l}(r) \\
{\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{2 \mu}{\hbar^{2}}\left(E+\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}-\frac{\hbar^{2} l(l+1)}{2 \mu r^{2}}\right)\right] R_{n l}(r)=0}
\end{gathered}
$$

Scaling

- choose the scaling factor for length

$$
E<0 \quad \frac{1}{x_{0}}=\frac{\sqrt{8 \mu|E|}}{\hbar}=\frac{\sqrt{-8 \mu E}}{\hbar}
$$

- dimensionless length $\rho=\frac{r}{x_{0}}=\frac{\sqrt{-8 \mu E}}{\hbar} r$

$$
\begin{gathered}
{\left[\frac{1}{x_{0}^{2}} \frac{\partial^{2}}{\partial \rho^{2}}+\frac{1}{x_{0}^{2}} \frac{2}{\rho} \frac{\partial}{\partial \rho}+\frac{2 \mu}{\hbar^{2}}\left(E+\frac{Z e^{2}}{4 \pi \varepsilon_{0} x_{0} \rho}-\frac{\hbar^{2} l(l+1)}{2 \mu x_{0}^{2} \rho^{2}}\right)\right] R(\rho)=0} \\
{\left[\frac{\partial^{2}}{\partial \rho^{2}}+\frac{2}{\rho} \frac{\partial}{\partial \rho}-\frac{1}{4}+\frac{2 \mu}{\hbar^{2}} \frac{x_{0} Z e^{2}}{4 \pi \varepsilon_{0} \rho}-\frac{l(l+1)}{\rho^{2}}\right] R(\rho)=0} \\
{\left[\frac{\partial^{2}}{\partial \rho^{2}}+\frac{2}{\rho} \frac{\partial}{\partial \rho}-\frac{1}{4}+\frac{\lambda}{\rho}-\frac{l(l+1)}{\rho^{2}}\right] R(\rho)=0}
\end{gathered}
$$

Characteristic length

- characteristic(eigen) length

$$
\begin{aligned}
\lambda & =\frac{2 \mu}{\hbar^{2}} \frac{x_{0} Z e^{2}}{4 \pi \varepsilon_{0}}=\frac{2 \mu}{\hbar^{2}} \frac{Z e^{2}}{4 \pi \varepsilon_{0}} \frac{\hbar}{\sqrt{-8 \mu E}} \\
& =\frac{Z e^{2}}{4 \pi \varepsilon_{0} \hbar} \sqrt{\frac{\mu}{-2 E}} \\
& =Z \alpha \sqrt{\frac{\mu c^{2}}{-2 E}} \quad x_{0}=\frac{\hbar^{2} 4 \pi \varepsilon_{0} \lambda}{2 \mu Z e^{2}}=\frac{a_{0} \lambda}{2 Z}
\end{aligned}
$$

- fine structure constant

$$
\alpha=\frac{e^{2}}{4 \pi \varepsilon_{0} c \hbar}=\frac{1}{137}
$$

asymptotic behavior

- when $\rho \rightarrow \infty$

$$
\begin{gathered}
{\left[\frac{\partial^{2}}{\partial \rho^{2}}+\frac{2}{\rho} \frac{\partial}{\partial \rho}-\frac{1}{4}+\frac{\lambda}{\rho}-\frac{l(l+1)}{\rho^{2}}\right] R(\rho)=0} \\
\longrightarrow\left[\frac{\partial^{2}}{\partial \rho^{2}}-\frac{1}{4}\right] R(\rho)=0 \\
R(\rho) \rightarrow e^{-\rho / 2}
\end{gathered}
$$

- in general

$$
R(\rho)=e^{-\rho / 2} G(\rho)
$$

asymptotic behavior

- when $\quad \rho \rightarrow 0$

$$
\begin{gathered}
{\left[\frac{\partial^{2}}{\partial \rho^{2}}+\frac{2}{\rho} \frac{\partial}{\partial \rho}-\frac{1}{4}+\frac{\lambda}{\rho}-\frac{l(l+1)}{\rho^{2}}\right] R(\rho)=0} \\
\longrightarrow\left[\frac{\partial^{2}}{\partial \rho^{2}}+\frac{2}{\rho} \frac{\partial}{\partial \rho}-\frac{l(l+1)}{\rho^{2}}\right] R(\rho)=0 \\
R(\rho) \propto \rho^{s} \\
s(s-1)+2 s-l(l+1)=0 \quad s(s+1)=l(l+1) \\
s=l \quad \text { or } \quad s=-l-1
\end{gathered}
$$

asymptotic behavior

- differential equation for G

$$
\begin{aligned}
& {\left[\frac{\partial^{2}}{\partial \rho^{2}}+\frac{2}{\rho} \frac{\partial}{\partial \rho}-\frac{1}{4}+\frac{\lambda}{\rho}-\frac{l(l+1)}{\rho^{2}}\right] e^{-\rho / 2} G(\rho)} \\
& = \\
& e^{-\rho / 2} \frac{\partial^{2} G}{\partial \rho^{2}}-e^{-\rho / 2} \frac{\partial G}{\partial \rho}+\frac{1}{4} e^{-\rho / 2} G \\
& +e^{-\rho / 2} \frac{2}{\rho} \frac{\partial G}{\partial \rho}-e^{-\rho / 2} \frac{1}{\rho} G+\left[-\frac{1}{4}+\frac{\lambda}{\rho}-\frac{l(l+1)}{\rho^{2}}\right] e^{-\rho / 2} G \\
& \\
& \quad \frac{\partial^{2} G}{\partial \rho^{2}}-\frac{\partial G}{\partial \rho}+\frac{2}{\rho} \frac{\partial G}{\partial \rho}-\frac{1}{\rho} G+\left[\frac{\lambda}{\rho}-\frac{l(l+1)}{\rho^{2}}\right] G=0 \\
& \quad \frac{\partial^{2} G}{\partial \rho^{2}}-\left(1-\frac{2}{\rho}\right) \frac{\partial G}{\partial \rho}+\left[\frac{\lambda-1}{\rho}-\frac{l(l+1)}{\rho^{2}}\right] G=0
\end{aligned}
$$

asymptotic behavior

- owing to the behavior of R at small ρ

$$
\begin{gathered}
G(\rho) \propto \rho^{l}=\rho^{l} H(\rho) \\
\frac{\partial^{2}}{\partial \rho^{2}} \rho^{l} H(\rho)-\left(1-\frac{2}{\rho}\right) \frac{\partial}{\partial \rho} \rho^{\prime} H(\rho)+\left[\frac{\lambda-1}{\rho}-\frac{l(l+1)}{\rho^{2}}\right] \rho^{\prime} H(\rho)=0 \\
\rho^{\prime} \frac{\partial^{2} H}{\partial \rho^{2}}+\frac{2 l}{\rho} \rho^{\prime} \frac{\partial H}{\partial \rho}+\rho^{l} \frac{l(l-1)}{\rho^{2}} H-\left(1-\frac{2}{\rho}\right) \frac{\partial H}{\partial \rho}-\left(1-\frac{2}{\rho}\right) \frac{l}{\rho} \rho^{l} H+\left[\frac{\lambda-1}{\rho}-\frac{l(l+1)}{\rho^{2}}\right] \rho^{\prime} H=0 \\
\frac{\partial^{2} H}{\partial \rho^{2}}+\left(\frac{2 l+2}{\rho}-1\right) \frac{\partial H}{\partial \rho}+\frac{\lambda-l-1}{\rho} H=0
\end{gathered}
$$

- We will take the similar approach with that in Chapter IV to discuss the possible eigenvalues

power series expansion

- Here we consider the approach of power series expansion for the differential equation

$$
\frac{\partial^{2} H}{\partial \rho^{2}}+\left(\frac{2 l+2}{\rho}-1\right) \frac{\partial H}{\partial \rho}+\frac{\lambda-l-1}{\rho} H=0
$$

- assuming $H(\rho)=\sum_{k} a_{k} \rho^{k}$

$$
\begin{gathered}
\frac{d H}{d \rho}=\sum_{k} k a_{k} \rho^{k-1} \quad \frac{d^{2} H}{d \rho^{2}}=\sum_{k} k(k-1) a_{k} \rho^{k-2} \\
\sum_{k} k(k-1) a_{k} \rho^{k-2}+\sum_{k}\left(\frac{2 l+2}{\rho}-1\right) k a_{k} \rho^{k-1}+\frac{\lambda-l-1}{\rho} \sum_{k} a_{k} \rho^{k}=0 \\
\sum_{k}[k(k-1)+k(2 l+2)] a_{k} k^{k-2}+\sum_{k}(\lambda-l-1-k) a_{k} \rho^{k-1}=0
\end{gathered}
$$

recursion formula

- rearrange the order

$$
\sum_{k}(k+1)(k+2 l+2) a_{k+1} \rho^{k-1}+\sum_{k}(\lambda-l-1-k) a_{k} \rho^{k-1}=0
$$

- The coefficients

$$
\begin{gathered}
(k+1)(k+2 l+2) a_{k+1}+(\lambda-l-1-k) a_{k}=0 \\
\frac{a_{k+1}}{a_{k}}=\frac{k+l+1-\lambda}{(k+1)(k+2 l+2)}
\end{gathered}
$$

recursion formula

- when k is large, it behaves as $\frac{a_{k+1}}{a_{k}} \rightarrow \frac{1}{k}$

$$
\begin{aligned}
& a_{k} \approx\left(\frac{1}{k}\right)\left(\frac{1}{k-1}\right)\left(\frac{1}{k-2}\right) \cdots \simeq \frac{1}{k!} C \\
& H(\rho)=\sum_{k} a_{k} \rho^{k} \simeq C \sum_{k} \frac{1}{k!} \rho^{k}=C e^{\rho}
\end{aligned}
$$

in general cases, $\quad R(\rho)=e^{-\frac{\rho}{2}} \rho^{l} H(\rho) \sim C \rho^{l} e^{\rho} e^{-\frac{\rho}{2}}=C \rho^{l} e^{\frac{\rho}{2}}$
diverges when ρ is large

termination of series

- we want a reasonable solution which is finite at infinite $\rho \quad a_{k+1}=0$ for some k

$$
k+l+1-\lambda=0 \quad k=0,1,2 \cdots
$$

- It restricts the value of $\lambda \quad \lambda=(1+l),(2+l) \cdots$

$$
\lambda=k+l+1=n
$$

- n is called principle quantum number
- some properties

$$
k \geq 0 \quad n \geq l+1
$$

$$
\begin{aligned}
& \lambda=n=Z \alpha \sqrt{\frac{\mu c^{2}}{-2 E}} \\
& E=-\mu c^{Z^{2} \alpha^{2}} \\
& 2 n^{2}
\end{aligned}
$$

Numerical method-I

- another way of scaling, Bohr radius $a_{0}=\frac{\hbar^{2} 4 \pi \varepsilon_{0}}{\mu e^{2}}$
- rewrite the equation $\rho=\frac{r}{a_{0}}$

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 \mu}\left[\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-\frac{l(l+1)}{r^{2}}\right] R_{n l}(r)-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r} R_{n l}(r)=E R_{n l}(r) \\
& {\left[-\frac{d^{2}}{d r^{2}}-\frac{2}{r} \frac{d}{d r}+\frac{l(l+1)}{r^{2}}\right] R_{n l}(r)-\frac{2 \mu Z e^{2}}{4 \pi \varepsilon_{0} \hbar^{2} r} R_{n l}(r)=\frac{2 \mu}{\hbar^{2}} E R_{n l}(r)} \\
& {\left[-\frac{\partial^{2}}{\partial \rho^{2}}-\frac{2}{\rho} \frac{\partial}{\partial \rho}-\frac{2 Z}{\rho}+\frac{l(l+1)}{\rho^{2}}\right] R(\rho)=\frac{2 \mu a_{0}^{2}}{\hbar^{2}} E R(\rho)}
\end{aligned}
$$

Numerical method-2

- normalization condition

$$
\int|\rho R(\rho)|^{2} d \rho=\int|f|^{2} d \rho=1 \quad f=\rho R(\rho)
$$

- The equation for f

$$
\begin{aligned}
& -\frac{\partial^{2}}{\partial \rho^{2}} f(\rho)-\left[\frac{2 Z}{\rho}-\frac{l(l+1)}{\rho^{2}}\right] f(\rho)=\lambda f(\rho) \\
& \lambda=\frac{2 \mu a_{0}^{2}}{\hbar^{2}} E=\frac{E}{R_{y}} \quad R_{y}=\frac{\mu e^{4}}{8 \varepsilon_{0}^{2} h^{2}}
\end{aligned}
$$

Numerical method-3

- Define the hermitian operator satisfying

$$
\hat{o}|f\rangle=\lambda|f\rangle \quad \hat{o}=-\frac{\partial^{2}}{\partial \rho^{2}}-\frac{2 Z}{\rho}+\frac{l(l+1)}{\rho^{2}}
$$

- If write the solution with a column vector with linearly spaced coordinate $\rho_{j+1}-\rho_{j}=\Delta \rho$

$$
f(\rho)=\left(\begin{array}{c}
\rho_{1} R\left(\rho_{1}\right) \\
\rho_{2} R\left(\rho_{2}\right) \\
\rho_{3} R\left(\rho_{3}\right) \\
\vdots \\
\rho_{N} R\left(\rho_{N}\right)
\end{array}\right) \quad \frac{d^{2}}{d \rho^{2}}=\frac{1}{(\Delta \rho)^{2}}\left(\begin{array}{ccccc}
-2 & 1 & 0 & & 0 \\
1 & -2 & 1 & \cdots & 0 \\
0 & 1 & -2 & & 0 \\
& \vdots & & \ddots & 1 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

Numerical method-4

eigenvalues

-0.99937578~ I
-0.2499605~1/4
$-0.10921206 \sim 1 / 9$
$-0.06246099 \sim 1 / 16$
$-0.03998396 \sim 1 / 25$
$-0.0277305 \sim 1 / 36$
$-0.01921007 \sim 1 / 49$

mass difference

- the mass of a deutron(Ipln) is twice of a proton
- Eigenenergy and transition frequency scale as

$$
\mu=\frac{m M}{m+M}=\frac{m}{1+\frac{m}{M}}
$$

- small difference of transition energies for a deuterium(epn) and a hydrogen(ep)

$$
\mu_{D} \simeq m_{e}\left(1-\frac{m_{e}}{2 m_{p}}\right) \quad \mu_{H} \simeq m_{e}\left(1-\frac{m_{e}}{m_{p}}\right)
$$

Proton size puzzle

- to study the spectrum of a muonic hydrogen ($\mu \mathrm{p}$)
- muon mass $\sim 270 \mathrm{me}_{\mathrm{e}}$
- a muon orbits much closer than an electron to the hydrogen nucleus, where it is consequently much more sensitive to the size of the proton.

The size of the proton

Randolf Pohl ${ }^{1}$, Aldo Antognini ${ }^{1}$, François Nez ${ }^{2}$, Fernando D. Amaro ${ }^{3}$, François Biraben ${ }^{2}$, João M. R. Cardoso ${ }^{3}$, Daniel S. Covita ${ }^{3,4}$, Andreas Dax ${ }^{5}$, Satish Dhawan ${ }^{5}$, Luis M. P. Fernandes ${ }^{3}$, Adolf Giesen ${ }^{6} \dagger$, Thomas Graf ${ }^{6}$, Theodor W. Hänsch ${ }^{1}$, Paul Indelicato ${ }^{2}$, Lucile Julien ${ }^{2}$, Cheng-Yang Kao ${ }^{7}$, Paul Knowles ${ }^{8}$, Eric-Olivier Le Bigot ${ }^{2}$, Yi-Wei Liu ${ }^{7}$, José A. M. Lopes ${ }^{3}$, Livia Ludhova ${ }^{8}$, Cristina M. B. Monteiro ${ }^{3}$, Françoise Mulhauser ${ }^{8} \dagger$, Tobias Nebel ${ }^{1}$, Paul Rabinowitz ${ }^{9}$, Joaquim M. F. dos Santos ${ }^{3}$, Lukas A. Schaller ${ }^{8}$, Karsten Schuhmann ${ }^{10}$, Catherine Schwob ${ }^{2}$, David Taqqu ${ }^{11}$, João F. C. A. Veloso ${ }^{4}$ \& Franz Kottmann ${ }^{12}$

degeneracy

- energy only depends on n

$$
n=k+l+1
$$

- since k is an integer, the number of possible k is $n($ from $l=0,1, \ldots . n-1)$
- for each l, there are $2 l+1$ states ($m=-l, \ldots . l$)
- total degeneracy

$$
\sum_{l=0}^{n-1} 2 l+1=n^{2}
$$

spectrum

$$
\begin{aligned}
& \mathrm{n}=2 \text { 戸 } \mathrm{I}=\mathrm{l} \text { —— } \mathrm{l}=0 \\
& n=1 \quad l=0 \\
& \mathrm{k}=0 \quad \mathrm{k}=\mathrm{l} \quad \mathrm{k}=2 \quad \mathrm{k}=3
\end{aligned}
$$

ground state

- $n=l, l=0(k=0)$

$$
\frac{a_{k+1}}{a_{k}}=\frac{k+l}{(k+1)(k+2 l+2)}
$$

- only a_{0} exists

$$
\begin{aligned}
& \text { radial } \\
& H(\rho)=1 \\
& R(\rho)=e^{-\rho / 2}
\end{aligned}
$$

Ist excited state

$$
\begin{aligned}
& \text { - } n=2, l=0(k=1) \quad \frac{a_{k+1}}{a_{k}}=\frac{k+l-1}{(k+1)(k+2 l+2)} \\
& a_{0}=1 \\
& a_{1}=-\frac{1}{2} \\
& a_{2}=0 \\
& \text { radial } \\
& H(\rho)=1-\frac{\rho}{2} \\
& n=2, l=1(k=0) \\
& \text { angular } \\
& H(\rho)=1 \\
& Y_{11}, Y_{10}, Y_{1-1} \\
& \text { - } n=2, l=1 \quad(k=0) \\
& \text { radial } \\
& Y_{11}, Y_{10}, Y_{1-1}
\end{aligned}
$$

2nd excited state

- $n=3, l=0(k=2) \quad a_{0}=1$

$$
\begin{aligned}
& a_{1}=-1 \\
& a_{2}=\frac{1}{6} \\
& a_{3}=0
\end{aligned}
$$

$$
\frac{a_{k+1}}{a_{k}}=\frac{k+l-2}{(k+1)(k+2 l+2)}
$$

radial angular

- $n=3, l=1 \quad(k=1)$

$$
H(\rho)=1-\rho+\frac{\rho^{2}}{6}
$$

$$
\begin{aligned}
& a_{0}=1 \\
& a_{1}=- \\
& a_{2}=0
\end{aligned}
$$

$$
a_{1}=-\frac{1}{4} \quad H(\rho)=1-\frac{\rho}{4} \quad Y_{11}, Y_{10}, Y_{1-1}
$$

associate Lagurre polynomials

- The radial eigenfunctions are called associate Lagurre polynomials

$$
\begin{gathered}
H(\rho)=L_{n-l-1}^{(2 l+1)}(\rho) \\
L_{n}^{\alpha}(\rho)=\sum_{m=0}\binom{n+\alpha}{n-m} \frac{(-\rho)^{m}}{m!}
\end{gathered}
$$

n	l	m_{l}	$R(r)$	$\boldsymbol{\Theta}(\boldsymbol{\theta})$	$\Phi(\phi)$
1	0	0	$\frac{2}{a_{0}^{3 / 2}} e^{-r / a_{0}}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2 \pi}}$
2	0	0	$\frac{1}{\left(2 a_{0}\right)^{3 / 2}}\left(2-\frac{r}{a_{0}}\right) e^{-r / 2 a_{0}}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2 \pi}}$
2	1	0	$\frac{1}{\sqrt{3}\left(2 a_{0}\right)^{3 / 2}} \frac{r}{a_{0}} e^{-r / 2 a_{0}}$	$\sqrt{\frac{3}{2}} \cos \theta$	$\frac{1}{\sqrt{2 \pi}}$
2	1	± 1	$\frac{1}{\sqrt{3}\left(2 a_{0}\right)^{3 / 2}} \frac{r}{a_{0}} e^{-r / 2 a_{0}}$	$\mp \frac{\sqrt{3}}{2} \sin \theta$	$\frac{1}{\sqrt{2 \pi}} e^{ \pm i \phi}$
3	0	0	$\frac{2}{\left(3 a_{0}\right)^{3 / 2}}\left(1-\frac{2 r}{3 a_{0}}+\frac{2 r^{2}}{27 a_{0}^{2}}\right) e^{-r / 3 a_{0}}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2 \pi}}$
3	1	0	$\frac{8}{9 \sqrt{2}\left(3 a_{0}\right)^{3 / 2}}\left(\frac{r}{a_{0}}-\frac{r^{2}}{6 a_{0}^{2}}\right) e^{-r / 3 a_{0}}$	$\sqrt{\frac{3}{2}} \cos \theta$	$\frac{1}{\sqrt{2 \pi}}$
3	1	± 1	$\frac{8}{9 \sqrt{2}\left(3 a_{0}\right)^{3 / 2}}\left(\frac{r}{a_{0}}-\frac{r^{2}}{6 a_{0}^{2}}\right) e^{-r / 3 a_{0}}$	$\mp \frac{\sqrt{3}}{2} \sin \theta$	$\frac{1}{\sqrt{2 \pi}} e^{ \pm i \phi}$
3	2	0	$\frac{4}{27 \sqrt{10}\left(3 a_{0}\right)^{3 / 2}} \frac{r^{2}}{a_{0}^{2}} e^{-r / 3 a_{0}}$	$\sqrt{\frac{5}{8}}\left(3 \cos ^{2} \theta-1\right)$	$\frac{1}{\sqrt{2 \pi}}$
3	2	± 1	$\frac{4}{27 \sqrt{10}\left(3 a_{0}\right)^{3 / 2}} \frac{r^{2}}{a_{0}^{2}} e^{-r / 3 a_{0}}$	$\mp \sqrt{\frac{15}{4}} \sin \theta \cos \theta$	$\frac{1}{\sqrt{2 \pi}} e^{ \pm i \phi}$
3	2	± 2	$\frac{4}{27 \sqrt{10}\left(3 a_{0}\right)^{3 / 2}} \frac{r^{2}}{a_{0}^{2}} e^{-r / 3 a_{0}}$	$\frac{\sqrt{15}}{4} \sin ^{2} \theta$	$\frac{1}{\sqrt{2 \pi}} e^{ \pm 2 i \phi}$

http://ne.phys.kyushu-u.ac.jp/seminar/MicroWorld2_E/ 2Part3 E/2P32_E/hydrogen_atom_E.htm

Hydrogen Wave Function

$\psi_{n l m}(r, \vartheta, \varphi)=\sqrt{\left(\frac{2}{n a_{0}}\right)^{3} \frac{(n-l-1)!}{2 n[(n+l)!}} e^{-\rho / 2} \rho^{l} L_{n-l-1}^{2 l+1}(\rho) \cdot Y_{l m}(\vartheta, \varphi)$

