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Photon emission spectra of 
excited hydrogen83 2.2 The Schrödinger wave equation
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Fig. 2.13. Photon emission spectra of excited hydrogen consist of a discrete number of spectral
lines corresponding to transitions from high energy levels to lower energy levels. Different groups
of characteristic emission line spectra have been given the names of those who first observed
them.

When the electron orbiting the proton of a hydrogen atom is excited to a high energy
state, it can lose energy by emitting a photon of energy --hω. Because the energy levels of
the hydrogen atom are quantized, photon emission spectra of excited hydrogen consist
of a discrete number of spectral lines. In Fig. 2.13, the emission lines correspond to
transitions from high energy levels to lower energy levels.

It is also possible for the reverse process to occur. In this case, photons with the
correct energy can be absorbed, causing an electron to be excited from a low energy
level to a higher energy level. This absorption process could be represented in Fig. 2.13
by changing the direction of the arrows on the vertical lines.

Different groups of energy transitions result in emission of photons of energy, --hω.
The characteristic emission line spectra have been given the names (Lyman, Balmer,
Paschen) of those who first observed them.

The Bohr model of the hydrogen atom is somewhat of a hybrid between classical
and quantum ideas. What is needed is a model that derives directly from quantum
mechanics. From what we know so far, the way to do this is to use the Schrödinger
equation to describe an electron moving in the spherically symmetric coulomb potential
of the proton charge.

In spherical coordinates, the time-independent solutions to the Schrödinger equation
are of the form

ψnlm(r, θ, φ) = Rn(r )%l(θ )&m(φ) (2.77)

ΔE = hν



Quantization of angular 
momentum

• Bohr postulate, 1913

• for circular orbit, angular 
momentum takes on values of 

• Atoms are observed stable and 
the total energy remains 
constant

 L = n
80 Toward quantum mechanics
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Fig. 2.11. Illustration of a classical circular orbit of an electron mass m0 moving with velocity v

in the coulomb potential of a proton mass mp. This classical view predicts that hydrogen is
unstable.
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Cut out an integer number of electron wavelengths
and wrap around in a circle as illustrated below

Fig. 2.12. (a) Illustration of electron wave propagating in free space with wavelength λe.
(b) Illustration of an electron wave wrapped around in a circular orbit about a proton. Single-
valuedness of the electron wave function suggests that only an integer number of electron
wavelengths can fit into a circular orbit of radius r .

Having established the wavy nature of the electron when traveling in free space and
when scattered, as shown in the Davisson and Germer experiment, it seems reason-
able to insist that an electron in a circular orbit must also exhibit a wavy character.
Imposing wavy character on the electron moving in a circular orbit around the proton
is interesting, because the geometry forces the wave to fold back upon itself. Since we
anticipate any wave function describing the electron to be single-valued, only integer
wavelengths can be fit into a circular orbit of a given circumference. Figure 2.12 illus-
trates the idea. In Fig. 2.12(a) we imagine cutting out an integer number, n, wavelengths
of an electron wave function moving in free space and, as shown in Fig. 2.12(b), wrap-
ping it around a circular orbit of radius r = nλe/2π , where n is a nonzero positive
integer.



Bohr’s model
• The forces are balanced

• apply quantization condition

• orbit radius
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Bohr’s model
• energy of circular orbits

• Quantization of energy
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atomic structure
• A dimensionless “magic” constant relating 
h, c, e and ε0

• in terms of α

• Rydberg energy 

• Bohr radius a0 =0.053 nm
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reduced mass
• the one-electron atom contains two 

particles 

µ = mM
m +M

mM
M = ∞



Sommerfeld rule
• For any physical system in which the 

coordinate are periodic functions of time, 
there exists a quantum condition for each 
coordinate

• When choosing the angular coordinate
 
pqd∫ q = nqh

 
pqd∫ q→ Ld∫ θ  L = n



application to SHO
• the SHO is a periodic motion.

• With constant energy, it goes in an elliptical 
trajectory in phase space

• The quantum condition requires that elipse 
area is nh

• area=

• We get energy quantization 

x

px

E = p2

2m
+ kx

2

2

π x0p0 = π 2E k 2mE
= 2πE ω

 E = nω



interpretation of the rule

• It describes the standing wave condition

L1

L2

L1
λ
+ L2

λ
= n

• If velocity changes

L1
λ1

+ L2
λ2

= n

• Apply de Broglie postulate

p1L1 + p2L2 = nh piLi
i
∑ = nh

φ1 +φ2 = 2nπ



Schrodinger equation in 3D

• in 3D system

• µ mass 

• momentum operator in 3D

• Schrodinger equation

H = p
2

2µ
+V r( )
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Central potential 
• central potential problem

• kinetic energy in spherical coordinate

V r( ) =V r( )
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Schrodinger equation
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Separation of variables

• separation of variables

ψ r,θ ,φ( ) = R r( )Y θ ,φ( )
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separation constant
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Angular equation
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φ equation

• equation for φ

• boundary condition

• solution
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θ equation

• let

• The solutions are special functions, called 
associated Legendre functions
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Legendre polynomials

• Associated Legendre functions can be 
generated from Legendre polynomials Pl

• Legendre polynomials are
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• It is easy to check Pl(x) satisfies 
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1− x2( ) + d

dx
2 l +1( ) d

dx
⎛
⎝⎜

⎞
⎠⎟
l

x − l l +1( ) d
dx

⎛
⎝⎜

⎞
⎠⎟
l−1⎡

⎣
⎢

⎤

⎦
⎥

= dl+2

dxl+2
1− x2( ) + 2 l +1( ) d

dx
⎛
⎝⎜

⎞
⎠⎟
l+1

x − l l +1( ) d
dx

⎛
⎝⎜

⎞
⎠⎟
l



limitations on l and m

• l should be non-negative integers

• if |m|>l  

• possible values of 

Pl
m x( ) = 0

 m = −l,−l +1,,0,l −1,l

 l = 0,1,2,



Legendre polynomials

wikipedia





Spherical harmonics
• normalized wavefunctions Y are called 

spherical harmonics

• l: azimuthal quantum number

• m:magnetic quantum number

Ylm θ ,φ( ) = −1( )m 2l +1
4π

l −m( )!
l +m( )!

⎡

⎣
⎢

⎤

⎦
⎥

1/2

Pl
m cosθ( )eimφ

Y 2 sinθ dθ dφ∫ = 1



Hydrogen atom

• attractive Coulomb potential

• Differential equation

 
− 

2

2µ
∂2

∂r2
+ 2
r
∂
∂r

−
l l +1( )
r2

⎡

⎣
⎢

⎤

⎦
⎥Rnl r( )− Ze2

4πε0r
Rnl r( ) = ERnl r( )

V r( ) = − Ze2

4πε0r

 

∂2

∂r2
+ 2
r
∂
∂r

+ 2µ
2

E + Ze2

4πε0r
−
2l l +1( )
2µr2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥Rnl r( ) = 0



Scaling
• choose the scaling factor for length

• dimensionless length 

 

1
x0

=
8µ E


=
−8µE


 

1
x0
2
∂2

∂ρ2
+ 1
x0
2
2
ρ

∂
∂ρ

+ 2µ
2

E + Ze2

4πε0x0ρ
−
2l l +1( )
2µx0

2ρ2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥R ρ( ) = 0

∂2

∂ρ2
+ 2
ρ

∂
∂ρ

− 1
4
+ 2µ
2

x0Ze
2

4πε0ρ
−
l l +1( )
ρ2

⎡

⎣
⎢

⎤

⎦
⎥R ρ( ) = 0

∂2

∂ρ2
+ 2
ρ

∂
∂ρ

− 1
4
+ λ
ρ
−
l l +1( )
ρ2

⎡

⎣
⎢

⎤

⎦
⎥R ρ( ) = 0

 
ρ = r

x0
=

−8µE


r

E < 0



Characteristic length

• characteristic(eigen) length

• fine structure constant

 

λ = 2µ
2

x0Ze
2

4πε0
= 2µ
2

Ze2

4πε0


−8µE

= Ze2

4πε0
µ

−2E

= Zα µc2

−2E

 
α = e2

4πε0c
= 1
137

 
x0 =
2 4πε0λ
2µZe2

= a0λ
2Z



asymptotic behavior

• when 

• in general

ρ→∞

∂2

∂ρ2
+ 2
ρ

∂
∂ρ

− 1
4
+ λ
ρ
−
l l +1( )
ρ2

⎡

⎣
⎢

⎤

⎦
⎥R ρ( ) = 0

∂2

∂ρ2
− 1
4

⎡

⎣
⎢

⎤

⎦
⎥R ρ( ) = 0

R ρ( )→ e−ρ 2

R ρ( ) = e−ρ 2G ρ( )



asymptotic behavior

• when ρ→ 0

R ρ( )∝ ρ s

∂2

∂ρ2
+ 2
ρ

∂
∂ρ

− 1
4
+ λ
ρ
−
l l +1( )
ρ2

⎡

⎣
⎢

⎤

⎦
⎥R ρ( ) = 0

∂2

∂ρ2
+ 2
ρ

∂
∂ρ

−
l l +1( )
ρ2

⎡

⎣
⎢

⎤

⎦
⎥R ρ( ) = 0

s s −1( ) + 2s − l l +1( ) = 0 s s +1( ) = l l +1( )

s = l s = −l −1or



asymptotic behavior

∂2

∂ρ2
+ 2
ρ

∂
∂ρ

− 1
4
+ λ
ρ
−
l l +1( )
ρ2

⎡

⎣
⎢

⎤

⎦
⎥e

−ρ 2G ρ( )

= e−ρ 2 ∂2G
∂ρ2

− e−ρ 2 ∂G
∂ρ

+ 1
4
e−ρ 2G

+e−ρ 2 2
ρ
∂G
∂ρ

− e−ρ 2 1
ρ
G + − 1

4
+ λ
ρ
−
l l +1( )
ρ2

⎡

⎣
⎢

⎤

⎦
⎥e

−ρ 2G

∂2G
∂ρ2

− ∂G
∂ρ

+ 2
ρ
∂G
∂ρ

− 1
ρ
G + λ

ρ
−
l l +1( )
ρ2

⎡

⎣
⎢

⎤

⎦
⎥G = 0

∂2G
∂ρ2

− 1− 2
ρ

⎛
⎝⎜

⎞
⎠⎟
∂G
∂ρ

+ λ −1
ρ

−
l l +1( )
ρ2

⎡

⎣
⎢

⎤

⎦
⎥G = 0

• differential equation for G



asymptotic behavior

G ρ( )∝ ρ l = ρ lH ρ( )

∂2

∂ρ2
ρ lH ρ( )− 1− 2

ρ
⎛
⎝⎜

⎞
⎠⎟

∂
∂ρ

ρ lH ρ( ) + λ −1
ρ

−
l l +1( )
ρ2

⎡

⎣
⎢

⎤

⎦
⎥ ρ

lH ρ( ) = 0

ρ l ∂2H
∂ρ2

+ 2l
ρ
ρ l ∂H

∂ρ
+ ρ l l l −1( )

ρ2
H − 1− 2

ρ
⎛
⎝⎜

⎞
⎠⎟
∂H
∂ρ

− 1− 2
ρ

⎛
⎝⎜

⎞
⎠⎟
l
ρ
ρ lH + λ −1

ρ
−
l l +1( )
ρ2

⎡

⎣
⎢

⎤

⎦
⎥ ρ

lH = 0

∂2H
∂ρ2

+ 2l + 2
ρ

−1
⎛
⎝⎜

⎞
⎠⎟
∂H
∂ρ

+ λ − l −1
ρ

H = 0

• We will take the similar approach with that in 
Chapter IV to discuss the possible eigenvalues

• owing to the behavior of R at small ρ



power series expansion
• Here we consider the approach of power 

series expansion for the differential equation

• assuming H ρ( ) = akρ
k

k
∑

dH
dρ

= kakρ
k−1

k
∑

∂2H
∂ρ2

+ 2l + 2
ρ

−1
⎛
⎝⎜

⎞
⎠⎟
∂H
∂ρ

+ λ − l −1
ρ

H = 0

d 2H
dρ2

= k k −1( )akρ k−2

k
∑

k k −1( )akρ k−2

k
∑ + 2l + 2

ρ
−1

⎛
⎝⎜

⎞
⎠⎟
kakρ

k−1

k
∑ + λ − l −1

ρ
akρ

k

k
∑ = 0

k k −1( ) + k 2l + 2( )⎡⎣ ⎤⎦akρ
k−2

k
∑ + λ − l −1− k( )akρ k−1

k
∑ = 0



recursion formula

• rearrange the order

• The coefficients

k +1( ) k + 2l + 2( )ak+1ρ k−1

k
∑ + λ − l −1− k( )akρ k−1

k
∑ = 0

k +1( ) k + 2l + 2( )ak+1 + λ − l −1− k( )ak = 0

ak+1
ak

= k + l +1− λ
k +1( ) k + 2l + 2( )



recursion formula

• when k is large, it behaves as

 
ak ≈

1
k

⎛
⎝⎜

⎞
⎠⎟

1
k −1

⎛
⎝⎜

⎞
⎠⎟

1
k − 2

⎛
⎝⎜

⎞
⎠⎟

1
k!
C

 
H ρ( ) = akρ

k

k
∑  C 1

k!
ρ k

k
∑ = Ceρ

 R ρ( ) = e−
ρ
2ρ lH ρ( ) Cρ leρe

−ρ
2 = Cρ le

ρ
2

diverges when ρ is large

in general cases, 

ak+1
ak

→ 1
k



termination of series
• we want a reasonable solution which is 

finite at infinite ρ

• It restricts the value of λ

• n is called principle quantum number

• some properties

ak+1 = 0 for some k

n ≥ l +1

k + l +1− λ = 0

λ = k + l +1= n

k ≥ 0
λ = n = Zα µc2

−2E

E = −µc2 Z
2α 2

2n2

 

k = 0,1,2
λ = 1+ l( ), 2 + l( )



Numerical method-1
• another way of scaling, Bohr radius

• rewrite the equation
 
a0 =
2 4πε0
µe2

ρ = r
a0

 

− d 2

dr2
− 2
r
d
dr

+
l l +1( )
r2

⎡

⎣
⎢

⎤

⎦
⎥Rnl r( )− 2µZe2

4πε0
2r
Rnl r( ) = 2µ

2
ERnl r( )

− ∂2

∂ρ2
− 2
ρ

∂
∂ρ

− 2Z
ρ

+
l l +1( )
ρ2

⎡

⎣
⎢

⎤

⎦
⎥R ρ( ) = 2µa0

2

2
ER ρ( )

 
− 

2

2µ
d 2

dr2
+ 2
r
d
dr

−
l l +1( )
r2

⎡

⎣
⎢

⎤

⎦
⎥Rnl r( )− Ze2

4πε0r
Rnl r( ) = ERnl r( )



Numerical method-2

• normalization condition

• The equation for f

ρR ρ( ) 2 dρ∫ = f 2 dρ∫ = 1 f = ρR ρ( )

− ∂2

∂ρ2
f ρ( )− 2Z

ρ
−
l l +1( )
ρ2

⎡

⎣
⎢

⎤

⎦
⎥ f ρ( ) = λ f ρ( )

 
λ = 2µa0

2

2
E = E

Ry

Ry =
µe4

8ε0
2h2



Numerical method-3
• Define the hermitian operator satisfying

Ô = − ∂2

∂ρ2
− 2Z

ρ
+
l l +1( )
ρ2

Ô f = λ f

• If write the solution with a column vector 
with linearly spaced coordinate

 

d 2

dρ2
= 1

Δρ( )2

−2 1 0 0
1 −2 1  0
0 1 −2 0

  1
0 0 0 1 2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 

f ρ( ) =

ρ1R ρ1( )
ρ2R ρ2( )
ρ3R ρ3( )


ρNR ρN( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

ρ j+1 − ρ j = Δρ



Numerical method-4

n=1

n=2

n=3

n=4

n=5

n=6

ρR ρ( )

r
a0

eigenvalues

-0.99937578~ 1 
-0.2499605 ~ 1/4 
-0.10921206 ~1/9
-0.06246099 ~1/16
-0.03998396 ~1/25
-0.0277305  ~1/36
-0.01921007 ~1/49

l=0



mass difference

• the mass of a deutron(1p1n) is twice of a 
proton

• Eigenenergy and transition frequency scale 
as 

• small difference of transition energies for a 
deuterium(epn) and a hydrogen(ep)

µ = mM
m +M

= m

1+ m
M

 
µD  me 1−

me

2mp

⎛

⎝⎜
⎞

⎠⎟  
µH  me 1−

me

mp

⎛

⎝⎜
⎞

⎠⎟



Proton size puzzle
• to study the spectrum of a muonic 

hydrogen (μp)

• muon mass ~ 270 me

• a muon orbits much closer than an 
electron to the hydrogen nucleus, where it 
is consequently much more sensitive to the 
size of the proton.



ability contribution DEpol
HFS ¼ 0:0080ð26Þ meV

is evaluated by using measured polarized struc-
ture functions (28, 29).

Comparison of DEth
HFS (Eq. 9) with DEexp

HFS
(Eq. 6) yields

rZ ¼ 1:082(31)exp(20)th fm
¼ 1:082ð37Þ fm ð11Þ

This value has a relative accuracy of ur = 3.4%,
limited by our measurements, and is compatible
with both rZ = 1.086(12) fm (4) and rZ = 1.045(4)
fm (5) from electron-proton scattering and rZ =
1.047(16) fm (30) and rZ = 1.037(16) fm (31)
fromH spectroscopy. The agreement between the
muonic and the other rZ values implies agreement
between predicted and measured 2S-HFS.

By knowing rZ and rE, it is possible to extract
themagnetic RMS radius whenmodels for charge
rE and magnetization distributions rM are as-
sumed. Use of a dipole model for both, with the
muonic values for rE and rZ, yields rM = 0.87(6)
fm, in agreement with recent results from electron
scattering rM=0.803(17) fm (1, 32), rM=0.867(28)
fm (2), and rM = 0.86(3) fm (33).

The proton-size puzzle. The origin of the large
discrepancy between our rE and theCODATAvalue
is not yet known (34). The radius definitions used in
H and mp spectroscopy and in scattering are con-
sistent (35). Various studies have confirmed the
theory of the mp Lamb shift and in particular the

proton-structure contributions. The extracted rE
value changes by less than our quoted uncertainty
for various models of the proton charge distribu-
tion (36).

Solving the proton radius puzzle by assuming
a large tail for the proton charge distribution (37)
is ruled out by electron-proton scattering data
(5, 38, 39) and by chiral perturbation theory (40).
The possibility that we performed spectroscopy
on a three-body system such as a ppm-molecule
or a mpe-ion instead of a “bare” mp atom (41) has
been excluded by three-body calculations (42).

The DETPE between the muon and a proton
with structure is evaluated by using the doubly
virtual Compton amplitude, which, by means of
dispersion relations, can be related to measured
proton form factors and spin-averaged structure
functions. Part of a subtraction term needed to
remove a divergence in one Compton amplitude
is usually approximated by using the one-photon
on-shell form factor (19). A possible large uncer-
tainty related with this approximation has been
emphasized in (26, 43), but this possibility has
been strongly constrained by heavy-baryon chiral
perturbation theory calculations (25).

R∞ is necessary to extract rE from the mea-
sured 1S-2S transition frequency in H (44). Hence,
several new atomic physics experiments aim at
an improved determination of R∞, checking also
for possible systematic shifts in previous R∞ de-
terminations in H.

Recent electron-proton scatteringmeasurements
yielded rE = 0.879(9) fm (1) and rE = 0.875(11) fm
(2), in disagreement with our result. The extraction
of rE from elastic electron-proton scattering requires
extrapolation of themeasured electric form factor to
zero momentum transfer, Q2 = 0. This extrapo-
lation has been investigated in detail (45). A global
fit of proton and neutron form factors based on
dispersion relations and the vector-dominance
model gives rE = 0.84(1) fm (33), in agreement
with our value, albeit with a larger c2 than the
phenomenological fits (1).

The rE value from mp could deviate from
the values from electron-proton scattering and
H spectroscopy if the muon-proton interaction
differs from the electron-proton interaction. The
window for such “new physics” is small given
the multitude of low-energy experimental con-
straints coming from hydrogen, muonium, and
mSi spectroscopy; electron and muon g-2 mea-
surements; meson decays; neutron scattering; and
searches for dark photons, etc. [(46) and refer-
ences therein]. Nevertheless, models with new
force carriers of MeV-mass have been proposed
that could explain the rE puzzle without conflict-
ing with other experimental observations (46, 47).

Conclusions.We have presented a measure-
ment of the 2SF¼0

1=2 -2P
F¼1
3=2 transition in mp and a

reanalysis of the 2SF¼1
1=2 -2PF¼2

3=2 transition (6). Sum-
ming and subtracting these two measurements
leads to an independent assessment of the 2S-HFS

Fig. 2. Experimental
apparatus. Accelerator-
created negative pions
are transported to the
cyclotron trap. Here they
decay into MeV-energy
muons, which are decel-
erated by a thin foil placed
at the trap center. The re-
sulting keV-energy muons
leave the trap and fol-
low a toroidal magnetic
field of 0.15 T (acting
as a momentum filter) be-
fore entering a 5-T sole-
noid where the hydrogen
target is placed. A muon
entrance detector pro-
vides a signal that trig-
gers the laser system.
About 0.9 ms later, the
formed mp is irradiated
by the laser pulse to in-
duce the 2S-2P transi-
tion. Such a short delay
is achieved by the con-
tinuous 1.5-kWpumping
of two Q-switched disk
lasers operating in prelas-
ing mode (8). The disk-
laser pulses are frequency
doubled [second harmonic generation (SHG)] and used to pump a Ti:Sa laser. The Ti:
Sa oscillator is seededby a stabilized continuous-wave Ti:Sa laser, and the emitted red
pulses of ~700-nm wavelength and 5-ns length are well suited for efficient Raman

conversion to 5.5 - 6 mm via three Stokes shifts in hydrogen gas at 15 bar (9). These
pulses are then injected into amultipass cavity surrounding the hydrogen gas target.
Absolute calibration from 5.5 to 6 mm was performed by water vapor spectroscopy.
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degeneracy

• energy only depends on n

• since k is an integer, the number of possible 
k is n (from l=0, 1, ....n-1)

• for each l, there are 2l+1 states (m=-l, ....l)

• total degeneracy

n = k + l +1

2l +1
l=0

n−1

∑ = n2



spectrum

k=0 k=1 k=2 k=3

n=1

n=2

n=3

n=4

l=0

l=0

l=0

l=0

l=1

l=2

l=3

l=1

l=1l=2



ground state

• n=1, l=0 (k=0)

• only a0 exists

ak+1
ak

= k + l
k +1( ) k + 2l + 2( )

H ρ( ) = 1 Y00 = cosntant

R ρ( ) = e−ρ 2

radial angular



1st excited state

• n=2, l=0 (k=1)

• n=2, l=1 (k=0)

a0 = 1

a1 = − 1
2

a2 = 0

ak+1
ak

= k + l −1
k +1( ) k + 2l + 2( )

H ρ( ) = 1− ρ
2 Y00

H ρ( ) = 1 Y11,Y10,Y1−1

radial angular

radial angular



2nd excited state
• n=3, l=0 (k=2)

• n=3, l=1 (k=1)

a0 = 1
a1 = −1

a2 =
1
6

a3 = 0

ak+1
ak

= k + l − 2
k +1( ) k + 2l + 2( )

a0 = 1

a1 = − 1
4

a2 = 0

H ρ( ) = 1− ρ + ρ2

6
Y00

radial angular

H ρ( ) = 1− ρ
4

Y11,Y10,Y1−1



associate Lagurre 
polynomials

• The radial eigenfunctions are called 
associate Lagurre polynomials

H ρ( ) = Ln−l−1(2l+1) ρ( )

Ln
α ρ( ) = n +α

n −m
⎛
⎝⎜

⎞
⎠⎟m=0

∑ −ρ( )m
m!





http://ne.phys.kyushu-u.ac.jp/seminar/MicroWorld2_E/
2Part3_E/2P32_E/hydrogen_atom_E.htm
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