one-electron atoms

2018/3/15

https://franklyandjournal.wordpress.com/2016/07/18/hydrogen-spectrum/

Photon emission spectra of excited hydrogen

Quantization of angular momentum

- Bohr postulate, 1913
- for circular orbit, angular momentum takes on values of

 $L = n\hbar$

 Atoms are observed stable and the total energy remains constant

Bohr's model

• The forces are balanced

$$\frac{Ze^2}{4\pi\varepsilon_0 r^2} = m\frac{v^2}{r}$$

• apply quantization condition $mvr = n\hbar$ $\frac{Ze^2}{4\pi\varepsilon_0} = mv^2r = \frac{n^2\hbar^2}{mr}$ • orbit radius

$$r = 4\pi\varepsilon_0 \frac{n^2\hbar^2}{mZe^2}$$

 $r = 5.3 \times 10^{-11} \text{m}$ (Z = 1) Bohr radius

Bohr's model

• energy of circular orbits

$$K = \frac{1}{2}mv^{2}$$
$$V = -\frac{Ze^{2}}{4\pi\varepsilon_{0}r} = -2K$$

• Quantization of energy

$$E = K + V = -\frac{V}{2} = -\frac{Ze^2}{8\pi\varepsilon_0 r} = -\frac{m}{2\hbar^2} \left(\frac{Ze^2}{4\pi\varepsilon_0}\right)^2 \frac{1}{n^2}$$

atomic structure

• A dimensionless "magic" constant relating h, c, e and ε_0

$$\alpha = \frac{e^2}{4\pi\varepsilon_0\hbar c} \sim \frac{1}{137}$$

- in terms of α $E = -\frac{1}{2} \frac{mZ^2 \alpha^2 c^2}{n^2} = -R_y \frac{Z^2}{n^2}$ $r = \frac{\hbar}{mcZ\alpha} n^2 = \frac{n^2}{Z} a_0$ • Dyidhene energy $p = \frac{1}{2} a_0^2 = \frac{1}{2} a_0^2$
- Rydberg energy $R_y = \frac{1}{2}m\alpha^2 c^2 = 13.6 \text{ eV}$
- Bohr radius $a_0 = 0.053$ nm

reduced mass

 the one-electron atom contains two particles

Sommerfeld rule

• For any physical system in which the coordinate are periodic functions of time, there exists a quantum condition for each coordinate

$$\oint p_q dq = n_q h$$

• When choosing the angular coordinate

$$\oint p_q dq \to \oint L d\theta \qquad \qquad L = n\hbar$$

application to SHO

- the SHO is a periodic motion.
- With constant energy, it goes in an elliptical trajectory in phase space
- The quantum condition requires that elipse area is *nh*

• area=
$$\pi x_0 p_0 = \pi \sqrt{2E/k} \sqrt{2mE}$$

= $2\pi E/\omega$ • x

 $E = \frac{p^2}{2}$

 kx^2

• We get energy quantization $E = n\hbar\omega$

interpretation of the rule

• It describes the standing wave condition

• Apply de Broglie postulate

$$p_1L_1 + p_2L_2 = nh \qquad \sum_i p_iL_i = nh$$

Schrodinger equation in 3D

• in 3D system
$$H = \frac{\mathbf{p}^2}{2\mu} + V(\mathbf{r})$$

• μ mass

- momentum operator in 3D $\mathbf{p} = \left(p_x, p_y, p_z\right) = \left(\frac{\hbar}{i}\frac{\partial}{\partial x}, \frac{\hbar}{i}\frac{\partial}{\partial y}, \frac{\hbar}{i}\frac{\partial}{\partial z}\right)$
- Schrodinger equation

$$-\frac{\hbar^2}{2\mu} \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right] \psi(x, y, z) + V(x, y, z) \psi(x, y, z) = E \psi(x, y, z)$$

Central potential

• central potential problem

 $V(\mathbf{r}) = V(r)$

separable in spherical coordinate

• kinetic energy in spherical coordinate

$$-\frac{\hbar^{2}}{2\mu} \left[\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}} \right] = -\frac{\hbar^{2}}{2\mu} \nabla^{2}$$

$$\nabla^{2} \rightarrow \frac{\partial^{2}}{\partial r^{2}} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^{2}} \left(\frac{\partial^{2}}{\partial \theta^{2}} + \cot\theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^{2}\theta} \frac{\partial^{2}}{\partial \phi^{2}} \right)$$

$$\nabla^{2} = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial}{\sin\theta} \left(\sin\theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^{2}} \frac{\partial^{2}}{\sin^{2}\theta} \frac{\partial^{2}}{\partial \phi^{2}}$$

Easy way to memorize

$$\begin{aligned} \frac{\partial}{\partial x} &= \frac{\partial r}{\partial x}\frac{\partial}{\partial r} + \frac{\partial \theta}{\partial x}\frac{\partial}{\partial \theta} + \frac{\partial \phi}{\partial x}\frac{\partial}{\partial \phi} \\ \frac{\partial^2}{\partial x^2} &= \frac{\partial}{\partial x} \left(\frac{\partial r}{\partial x}\frac{\partial}{\partial r} + \frac{\partial \theta}{\partial x}\frac{\partial}{\partial \theta} + \frac{\partial \phi}{\partial x}\frac{\partial}{\partial \phi}\right) \\ &= \left(\frac{\partial r}{\partial x}\right)^2 \frac{\partial^2}{\partial r^2} + \left(\frac{\partial \theta}{\partial x}\right)^2 \frac{\partial^2}{\partial \theta^2} + \left(\frac{\partial \phi}{\partial x}\right)^2 \frac{\partial^2}{\partial \phi^2} + \frac{\partial^2 r}{\partial x^2}\frac{\partial}{\partial r} + \frac{\partial^2 \theta}{\partial x^2}\frac{\partial}{\partial \theta} + \frac{\partial^2 \phi}{\partial x^2}\frac{\partial}{\partial \phi} \\ &+ 2\frac{\partial r}{\partial x}\frac{\partial \theta}{\partial x}\frac{\partial}{\partial r}\frac{\partial}{\partial \theta} + 2\frac{\partial \theta}{\partial x}\frac{\partial \phi}{\partial x}\frac{\partial}{\partial \theta}\frac{\partial}{\partial \phi} + 2\frac{\partial r}{\partial x}\frac{\partial \phi}{\partial x}\frac{\partial}{\partial r}\frac{\partial}{\partial \phi} \\ \end{aligned}$$

2nd derivative terms

$$\nabla^{2} = \left[\left(\frac{\partial r}{\partial x} \right)^{2} + \left(\frac{\partial r}{\partial y} \right)^{2} + \left(\frac{\partial r}{\partial z} \right)^{2} \right] \frac{\partial^{2}}{\partial r^{2}} + \left[\left(\frac{\partial \theta}{\partial x} \right)^{2} + \left(\frac{\partial \theta}{\partial y} \right)^{2} + \left(\frac{\partial \theta}{\partial z} \right)^{2} \right] \frac{\partial^{2}}{\partial \theta^{2}} + \left[\left(\frac{\partial \phi}{\partial x} \right)^{2} + \left(\frac{\partial \phi}{\partial y} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} \right] \frac{\partial^{2}}{\partial \phi^{2}} + \left[\left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} \right] \frac{\partial^{2}}{\partial \phi^{2}} + \left[\left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} \right] \frac{\partial^{2}}{\partial \phi^{2}} + \left[\left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} \right] \frac{\partial^{2}}{\partial \phi^{2}} + \left[\left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} \right] \frac{\partial^{2}}{\partial \phi^{2}} + \left[\left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} \right] \frac{\partial^{2}}{\partial \phi^{2}} + \left[\left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} \right] \frac{\partial^{2}}{\partial \phi^{2}} + \left[\left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} \right] \frac{\partial^{2}}{\partial \phi^{2}} + \left[\left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} \right] \frac{\partial^{2}}{\partial \phi^{2}} + \left[\left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} \right] \frac{\partial^{2}}{\partial \phi^{2}} + \left[\left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} \right] \frac{\partial^{2}}{\partial \phi^{2}} + \left[\left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} \right] \frac{\partial^{2}}{\partial \phi^{2}} + \left[\left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} \right] \frac{\partial^{2}}{\partial \phi^{2}} + \left[\left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} \right] \frac{\partial^{2}}{\partial \phi^{2}} + \left[\left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} \right] \frac{\partial^{2}}{\partial \phi^{2}} + \left[\left(\frac{\partial \phi}{\partial z} \right)^{2} + \left(\frac{\partial \phi}{\partial z} \right)^{2} \right] \frac{\partial^{2}}{\partial \phi^{2}} + \left(\frac{\partial \phi}{\partial z} \right)^{2} \frac{\partial^{2}}{\partial \phi^{2}} + \left(\frac{\partial \phi}{\partial \phi} \right)^{2} \frac{\partial^{2}}{\partial \phi^{2}} + \left($$

cross terms =0

$$\frac{\partial r}{\partial x} = \sin\theta \cos\phi$$

$$\frac{\partial r}{\partial y} = \sin\theta \cos\phi$$

$$\frac{\partial r}{\partial y} = \sin\theta \cos\phi$$

$$\frac{\partial r}{\partial y} = \sin\theta \cos\phi$$

$$\frac{\partial r}{\partial z} = -\cos\theta$$

$$\frac{\partial \theta}{\partial x} = \frac{\cos\theta \cos\phi}{r}$$

$$\frac{\partial \theta}{\partial z} = -\frac{\sin\theta}{r}$$

$$\frac{\partial \theta}{\partial z} = -\frac{\sin\theta}{r}$$

$$\frac{\partial \theta}{\partial z} = -\frac{\sin\theta}{r}$$

$$\frac{\partial r}{\partial x} = -\frac{\sin\theta}{r}$$

$$\frac{\partial r}{\partial x} = \frac{\sin\theta}{r \sin\theta}$$

$$\frac{\partial \theta}{\partial y} = \frac{\cos\phi}{r \sin\theta}$$

$$\frac{\partial r}{\partial y} = \frac{\partial r}{r \sin\theta}$$

$$\frac{\partial r}{\partial x} = \frac{\partial r}{r \partial y} = \frac{\partial r}{r \partial y}$$

$$\frac{\partial r}{\partial y} = \frac{\partial r}{r \partial y}$$

$$\frac{\partial r}{r \partial$$

r

Ist derivative terms

$$\frac{\partial^2 r}{\partial x^2} + \frac{\partial^2 r}{\partial y^2} + \frac{\partial^2 r}{\partial z^2} = \frac{2}{r}$$
$$\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} + \frac{\partial^2 \theta}{\partial z^2} = \frac{\cos \theta}{r^2 \sin \theta}$$
$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$$

$$\nabla^{2} = \frac{\partial^{2}}{\partial r^{2}} + \frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^{2}} \cot \theta \frac{\partial}{\partial \theta}$$
$$= \frac{\partial^{2}}{\partial r^{2}} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{\hbar^{2} r^{2}} L^{2}$$

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

Schrodinger equation

Separation of variables

separation of variables

 $\psi(r,\theta,\phi) = R(r)Y(\theta,\phi)$

$$-\frac{\hbar^2}{2\mu} \left[\frac{Y}{r^2} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \frac{R}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial Y}{\partial \theta} \right) + \frac{R}{r^2 \sin^2 \theta} \frac{\partial^2 Y}{\partial \phi^2} \right] + V(r)RY$$
$$= ERY$$

$$-\frac{\hbar^2}{2\mu} \left[\frac{1}{r^2 R} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \frac{1}{r^2 Y \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial Y}{\partial \theta} \right) + \frac{1}{r^2 Y \sin^2 \theta} \frac{\partial^2 Y}{\partial \phi^2} \right] + V(r) = E$$

separation constant

$$\frac{1}{R}\frac{d}{dr}\left(r^{2}\frac{dR}{dr}\right) - \frac{2\mu r^{2}}{\hbar^{2}}\left(V - E\right) + \frac{1}{Y\sin\theta}\left[\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial Y}{\partial\theta}\right) + \frac{1}{\sin\theta}\frac{\partial^{2}Y}{\partial\phi^{2}}\right] = 0$$

$$\frac{1}{R}\frac{d}{dr}\left(r^{2}\frac{dR}{dr}\right) - \frac{2\mu r^{2}}{\hbar^{2}}\left(V - E\right) = l(l+1)$$
$$\frac{1}{Y\sin\theta}\left[\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial Y}{\partial\theta}\right) + \frac{1}{\sin\theta}\frac{\partial^{2}Y}{\partial\phi^{2}}\right] = -l(l+1)$$

Here we choose the constant to be l(l+1)

Angular equation

$$\sin\theta \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial Y}{\partial\theta} \right) + \frac{\partial^2 Y}{\partial\phi^2} = -l(l+1)\sin^2\theta Y$$

$$Y(\theta,\phi) = \Theta(\theta)\Phi(\phi)$$

$$\frac{1}{\Theta}\sin\theta \frac{d}{d\theta} \left(\sin\theta \frac{d\Theta}{d\theta}\right) + l(l+1)\sin^2\theta + \frac{1}{\Phi}\frac{d^2\Phi}{d\phi^2} = 0$$
$$\frac{1}{\Theta}\sin\theta \frac{d}{d\theta} \left(\sin\theta \frac{d\Theta}{d\theta}\right) + l(l+1)\sin^2\theta = m^2$$
$$\frac{1}{\Phi}\frac{d^2\Phi}{d\phi^2} = -m^2$$

Here we choose the constant to be m^2

ϕ equation

$$\frac{d^2\Phi}{d\phi^2} = -m^2\Phi$$

• boundary condition

 $\Phi(\phi+2\pi) = \Phi(\phi)$

• solution $\Phi = e^{im\phi}$ $m = 0, \pm 1, \pm 2 \cdots$

θ equation

$$\sin\theta \frac{d}{d\theta} \left(\sin\theta \frac{d\Theta}{d\theta}\right) + l(l+1)\sin^2\theta\Theta = m^2\Theta$$

$$\frac{d}{dx}\left[\left(1-x^2\right)\frac{d\Theta}{dx}\right] + l(l+1)\Theta = m^2\Theta$$

• The solutions are special functions, called associated Legendre functions

 $\Theta(\theta) = P_l^m(\cos\theta)$

Legendre polynomials

 Associated Legendre functions can be generated from Legendre polynomials P₁

$$P_{l}^{m}(x) = \left(1 - x^{2}\right)^{m/2} \left(\frac{d}{dx}\right)^{m} P_{l}(x) \qquad m > 0 \qquad P_{l}^{-m}(x) = P_{l}^{m}(x)$$

• Legendre polynomials are $P_l(x) = \frac{1}{2^l l!} \left(\frac{d}{dx}\right)^l (x^2 - 1)^l$

called Rodrigues formula

• It is easy to check $P_I(x)$ satisfies

$$\frac{d}{dx}\left[\left(1-x^2\right)\frac{dP_l}{dx}\right] + l(l+1)P_l = 0$$

$$\begin{bmatrix} (1-x^{2}), \frac{d}{dx} \end{bmatrix} = 2x \qquad [A,BC] = [A,B]C + B[A,C]$$
$$\begin{bmatrix} (1-x^{2}), (\frac{d}{dx})^{l} \end{bmatrix} = \begin{bmatrix} (1-x^{2}), (\frac{d}{dx})^{l-1} \end{bmatrix} (\frac{d}{dx}) + (\frac{d}{dx})^{l-1} \begin{bmatrix} (1-x^{2}), (\frac{d}{dx}) \end{bmatrix}$$
$$= \begin{bmatrix} (1-x^{2}), (\frac{d}{dx})^{l-1} \end{bmatrix} (\frac{d}{dx}) + 2x (\frac{d}{dx})^{l-1} + 2(l-1) (\frac{d}{dx})^{l-2}$$
$$= 2lx (\frac{d}{dx})^{l-1} + (l-1)l (\frac{d}{dx})^{l-2}$$
$$= 2l (\frac{d}{dx})^{l-1} x - (l-1)l (\frac{d}{dx})^{l-2}$$
$$\begin{bmatrix} A, B^{n} \end{bmatrix} = n[A,B]B^{n-1}$$
$$x (\frac{d}{dx})^{l-1} = (\frac{d}{dx})^{l-1} x - (l-1) (\frac{d}{dx})^{l-2}$$
if $[A,B] = \text{constant}$

$$\frac{d}{dx} \left[\left(1 - x^2 \right) \frac{d}{dx} \right] \frac{d^l}{dx^l} = \frac{d}{dx} \frac{d^{l+1}}{dx^{l+1}} \left(1 - x^2 \right) + \frac{d}{dx} \left[2\left(l+1 \right) \left(\frac{d}{dx} \right)^l x - l\left(l+1 \right) \left(\frac{d}{dx} \right)^{l-1} \right]$$
$$= \frac{d^{l+2}}{dx^{l+2}} \left(1 - x^2 \right) + 2\left(l+1 \right) \left(\frac{d}{dx} \right)^{l+1} x - l\left(l+1 \right) \left(\frac{d}{dx} \right)^l$$

$$\frac{d}{dx} \Big[(1-x^2) \frac{d}{dx} \Big] \frac{d^l}{dx^l} (1-x^2)^l = \frac{d^{l+2}}{dx^{l+2}} (1-x^2)^{l+1} + 2(l+1) \Big(\frac{d}{dx} \Big)^{l+1} x (1-x^2)^l - l(l+1) \Big(\frac{d}{dx} \Big)^l (1-x^2)^l \\ = -2(l+1) \Big(\frac{d}{dx} \Big)^{l+1} x (1-x^2)^l + 2(l+1) \Big(\frac{d}{dx} \Big)^{l+1} x (1-x^2)^l - l(l+1) \Big(\frac{d}{dx} \Big)^l (1-x^2)^l \\ = -l(l+1) \Big(\frac{d}{dx} \Big)^l (1-x^2)^l$$

limitations on I and m

• *l* should be non-negative integers $l = 0, 1, 2, \cdots$

• if
$$|m| > l$$
 $P_l^m(x) = 0$

• possible values of $m = -l, -l + 1, \dots, 0, \dots l - 1, l$

Legendre polynomials

 $P_{0}(x) = 1$ $P_{1}(x) = x$ $P_{2}(x) = \frac{1}{2}(3x^{2} - 1)$ $P_{3}(x) = \frac{1}{2}(5x^{3} - 3x)$ $P_{4}(x) = \frac{1}{8}(35x^{4} - 30x^{2} + 3)$ $P_{5}(x) = \frac{1}{8}(63x^{5} - 70x^{3} + 15x)$ $P_{6}(x) = \frac{1}{16}(231x^{6} - 315x^{4} + 105x^{2} - 5).$

legendre polynomials

 $P_1^1(\theta)$

Spherical harmonics

normalized wavefunctions Y are called spherical harmonics

 $\int |Y|^2 \sin\theta \, d\theta \, d\phi = 1$

$$Y_{lm}(\theta,\phi) = (-1)^{m} \left[\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!} \right]^{1/2} P_{l}^{m}(\cos\theta) e^{im\phi}$$

- *l*: azimuthal quantum number
- *m*:magnetic quantum number

Hydrogen atom

- attractive Coulomb potential $V(r) = -\frac{Ze^2}{4\pi\varepsilon_0 r}$
- Differential equation

$$-\frac{\hbar^2}{2\mu} \left[\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} - \frac{l(l+1)}{r^2} \right] R_{nl}(r) - \frac{Ze^2}{4\pi\varepsilon_0 r} R_{nl}(r) = ER_{nl}(r)$$

$$\left[\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} + \frac{2\mu}{\hbar^2}\left(E + \frac{Ze^2}{4\pi\varepsilon_0 r} - \frac{\hbar^2 l(l+1)}{2\mu r^2}\right)\right]R_{nl}(r) = 0$$

Scaling

• choose the scaling factor for length

$$E < 0 \qquad \qquad \frac{1}{x_0} = \frac{\sqrt{8\mu|E|}}{\hbar} = \frac{\sqrt{-8\mu E}}{\hbar}$$

• dimensionless length
$$\rho = \frac{r}{x_0} = \frac{\sqrt{-8\mu E}}{\hbar}r$$

 $\begin{bmatrix} \frac{1}{x_0^2} \frac{\partial^2}{\partial \rho^2} + \frac{1}{x_0^2} \frac{2}{\rho} \frac{\partial}{\partial \rho} + \frac{2\mu}{\hbar^2} \left(E + \frac{Ze^2}{4\pi\varepsilon_0 x_0 \rho} - \frac{\hbar^2 l(l+1)}{2\mu x_0^2 \rho^2} \right) \right] R(\rho) = 0$ $\begin{bmatrix} \frac{\partial^2}{\partial \rho^2} + \frac{2}{\rho} \frac{\partial}{\partial \rho} - \frac{1}{4} + \frac{2\mu}{\hbar^2} \frac{x_0 Ze^2}{4\pi\varepsilon_0 \rho} - \frac{l(l+1)}{\rho^2} \right] R(\rho) = 0$ $\begin{bmatrix} \frac{\partial^2}{\partial \rho^2} + \frac{2}{\rho} \frac{\partial}{\partial \rho} - \frac{1}{4} + \frac{\lambda}{\rho} - \frac{l(l+1)}{\rho^2} \end{bmatrix} R(\rho) = 0$

Characteristic length

• characteristic(eigen) length

• fine structure constant

$$\alpha = \frac{e^2}{4\pi\varepsilon_0 c\hbar} = \frac{1}{137}$$

• when
$$\rho \to \infty$$

$$\left[\frac{\partial^2}{\partial \rho^2} + \frac{2}{\rho}\frac{\partial}{\partial \rho} - \frac{1}{4} + \frac{\lambda}{\rho} - \frac{l(l+1)}{\rho^2}\right]R(\rho) = 0$$

$$\longrightarrow \left[\frac{\partial^2}{\partial \rho^2} - \frac{1}{4}\right] R(\rho) = 0$$

$$R(\rho) \rightarrow e^{-\rho/2}$$

• in general $R(\rho) = e^{-\rho/2}G(\rho)$

when $\rho \rightarrow 0$ $\left| \frac{\partial^2}{\partial \rho^2} + \frac{2}{\rho} \frac{\partial}{\partial \rho} - \frac{1}{4} + \frac{\lambda}{\rho} - \frac{l(l+1)}{\rho^2} \right| R(\rho) = 0$ $\longrightarrow \qquad \left| \frac{\partial^2}{\partial \rho^2} + \frac{2}{\rho} \frac{\partial}{\partial \rho} - \frac{l(l+1)}{\rho^2} \right| R(\rho) = 0$ $R(\rho) \propto \rho^s$ s(s-1)+2s-l(l+1)=0 s(s+1)=l(l+1)s = l or s = -l - 1

• differential equation for G

$$\begin{split} & \left[\frac{\partial^2}{\partial\rho^2} + \frac{2}{\rho}\frac{\partial}{\partial\rho} - \frac{1}{4} + \frac{\lambda}{\rho} - \frac{l(l+1)}{\rho^2}\right]e^{-\rho/2}G(\rho) \\ &= e^{-\rho/2}\frac{\partial^2 G}{\partial\rho^2} - e^{-\rho/2}\frac{\partial G}{\partial\rho} + \frac{1}{4}e^{-\rho/2}G \\ &+ e^{-\rho/2}\frac{2}{\rho}\frac{\partial G}{\partial\rho} - e^{-\rho/2}\frac{1}{\rho}G + \left[-\frac{1}{4} + \frac{\lambda}{\rho} - \frac{l(l+1)}{\rho^2}\right]e^{-\rho/2}G \end{split}$$

$$\frac{\partial^2 G}{\partial \rho^2} - \frac{\partial G}{\partial \rho} + \frac{2}{\rho} \frac{\partial G}{\partial \rho} - \frac{1}{\rho} G + \left[\frac{\lambda}{\rho} - \frac{l(l+1)}{\rho^2}\right] G = 0$$
$$\frac{\partial^2 G}{\partial \rho^2} - \left(1 - \frac{2}{\rho}\right) \frac{\partial G}{\partial \rho} + \left[\frac{\lambda - 1}{\rho} - \frac{l(l+1)}{\rho^2}\right] G = 0$$

• owing to the behavior of R at small ρ

$$G(\rho) \propto \rho^{l} = \rho^{l} H(\rho)$$
$$\frac{\partial^{2}}{\partial \rho^{2}} \rho^{l} H(\rho) - \left(1 - \frac{2}{\rho}\right) \frac{\partial}{\partial \rho} \rho^{l} H(\rho) + \left[\frac{\lambda - 1}{\rho} - \frac{l(l+1)}{\rho^{2}}\right] \rho^{l} H(\rho) = 0$$
$$\rho^{l} \frac{\partial^{2} H}{\partial \rho^{2}} + \frac{2l}{\rho} \rho^{l} \frac{\partial H}{\partial \rho} + \rho^{l} \frac{l(l-1)}{\rho^{2}} H - \left(1 - \frac{2}{\rho}\right) \frac{\partial H}{\partial \rho} - \left(1 - \frac{2}{\rho}\right) \frac{l}{\rho} \rho^{l} H + \left[\frac{\lambda - 1}{\rho} - \frac{l(l+1)}{\rho^{2}}\right] \rho^{l} H = 0$$
$$\frac{\partial^{2} H}{\partial \rho^{2}} + \left(\frac{2l+2}{\rho} - 1\right) \frac{\partial H}{\partial \rho} + \frac{\lambda - l - 1}{\rho} H = 0$$

• We will take the similar approach with that in Chapter IV to discuss the possible eigenvalues

power series expansion

• Here we consider the approach of power series expansion for the differential equation

$$\frac{\partial^2 H}{\partial \rho^2} + \left(\frac{2l+2}{\rho} - 1\right) \frac{\partial H}{\partial \rho} + \frac{\lambda - l - 1}{\rho} H = 0$$

• assuming $H(\rho) = \sum_{k} a_{k} \rho^{k}$

$$\frac{dH}{d\rho} = \sum_{k} k a_k \rho^{k-1} \qquad \qquad \frac{d^2 H}{d\rho^2} = \sum_{k} k (k-1) a_k \rho^{k-2}$$

$$\sum_{k} k(k-1)a_{k}\rho^{k-2} + \sum_{k} \left(\frac{2l+2}{\rho} - 1\right)ka_{k}\rho^{k-1} + \frac{\lambda - l - 1}{\rho}\sum_{k} a_{k}\rho^{k} = 0$$
$$\sum_{k} \left[k(k-1) + k(2l+2)\right]a_{k}\rho^{k-2} + \sum_{k} (\lambda - l - 1 - k)a_{k}\rho^{k-1} = 0$$

recursion formula

• rearrange the order

$$\sum_{k} (k+1)(k+2l+2)a_{k+1}\rho^{k-1} + \sum_{k} (\lambda - l - 1 - k)a_{k}\rho^{k-1} = 0$$

• The coefficients

$$(k+1)(k+2l+2)a_{k+1} + (\lambda - l - 1 - k)a_k = 0$$

$$\frac{a_{k+1}}{a_k} = \frac{k+l+1-\lambda}{(k+1)(k+2l+2)}$$

recursion formula

$$a_k \approx \left(\frac{1}{k}\right) \left(\frac{1}{k-1}\right) \left(\frac{1}{k-2}\right) \cdots \simeq \frac{1}{k!}C$$

$$H(\rho) = \sum_{k} a_{k} \rho^{k} \simeq C \sum_{k} \frac{1}{k!} \rho^{k} = C e^{\rho}$$

in general cases, $R(\rho) = e^{-\frac{\rho}{2}} \rho^{l} H(\rho) \sim C \rho^{l} e^{\rho} e^{-\frac{\rho}{2}} = C \rho^{l} e^{\frac{\rho}{2}}$ diverges when ρ is large

termination of series

• we want a reasonable solution which is finite at infinite ρ $a_{k+1} = 0$ for some k

$$k+l+1-\lambda = 0 \qquad k=0,1,2\cdots$$
It restricts the value of $\lambda \qquad \lambda = (1+l), (2+l)\cdots$

$$\lambda = k + l + 1 = n$$

• n is called principle quantum number

• some properties

$$k \ge 0$$
 $n \ge l+1$
 $k = -\mu c^2 \frac{Z^2 \alpha^2}{2n^2}$

Numerical method-I

- another way of scaling, Bohr radius $a_0 = \frac{\hbar^2 4 \pi \varepsilon_0}{\mu e^2}$
- rewrite the equation $\rho = \frac{r}{r}$ a_0

$$-\frac{\hbar^{2}}{2\mu} \left[\frac{d^{2}}{dr^{2}} + \frac{2}{r} \frac{d}{dr} - \frac{l(l+1)}{r^{2}} \right] R_{nl}(r) - \frac{Ze^{2}}{4\pi\varepsilon_{0}r} R_{nl}(r) = ER_{nl}(r)$$

$$\begin{bmatrix} -\frac{d^2}{dr^2} - \frac{2}{r}\frac{d}{dr} + \frac{l(l+1)}{r^2} \end{bmatrix} R_{nl}(r) - \frac{2\mu Z e^2}{4\pi\varepsilon_0 \hbar^2 r} R_{nl}(r) = \frac{2\mu}{\hbar^2} E R_{nl}(r)$$
$$\begin{bmatrix} -\frac{\partial^2}{\partial\rho^2} - \frac{2}{\rho}\frac{\partial}{\partial\rho} - \frac{2Z}{\rho} + \frac{l(l+1)}{\rho^2} \end{bmatrix} R(\rho) = \frac{2\mu a_0^2}{\hbar^2} E R(\rho)$$

Numerical method-2

normalization condition

$$\int |\rho R(\rho)|^2 d\rho = \int |f|^2 d\rho = 1 \qquad f = \rho R(\rho)$$

• The equation for f

$$-\frac{\partial^2}{\partial \rho^2} f(\rho) - \left[\frac{2Z}{\rho} - \frac{l(l+1)}{\rho^2}\right] f(\rho) = \lambda f(\rho)$$

$$\lambda = \frac{2\mu a_0^2}{\hbar^2} E = \frac{E}{R_y} \qquad \qquad R_y = \frac{\mu e^4}{8\varepsilon_0^2 h^2}$$

Numerical method-3

Define the hermitian operator satisfying

$$\hat{O}|f\rangle = \lambda|f\rangle$$
 $\hat{O} = -\frac{\partial^2}{\partial\rho^2} - \frac{2Z}{\rho} + \frac{l(l+1)}{\rho^2}$

• If write the solution with a column vector with linearly spaced coordinate $\rho_{j+1} - \rho_j = \Delta \rho$

$$f(\rho) = \begin{pmatrix} \rho_1 R(\rho_1) \\ \rho_2 R(\rho_2) \\ \rho_3 R(\rho_3) \\ \vdots \\ \rho_N R(\rho_N) \end{pmatrix} \qquad \frac{d^2}{d\rho^2} = \frac{1}{(\Delta \rho)^2} \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & \cdots & 0 \\ 0 & 1 & -2 & 0 \\ \vdots & \ddots & 1 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$

Numerical method-4

eigenvalues

-0.99937578~ I -0.2499605 ~ I/4 -0.10921206 ~1/9 -0.06246099 ~1/16 -0.03998396 ~1/25 -0.0277305 ~1/36 -0.01921007 ~1/49

mass difference

- the mass of a deutron(lpln) is twice of a proton
- Eigenenergy and transition frequency scale as $\mu = \frac{mM}{m+M} = \frac{m}{1+\frac{m}{M}}$
- small difference of transition energies for a deuterium(epn) and a hydrogen(ep)

$$\mu_D \simeq m_e \left(1 - \frac{m_e}{2m_p} \right) \qquad \qquad \mu_H \simeq m_e \left(1 - \frac{m_e}{m_p} \right)$$

Proton size puzzle

- to study the spectrum of a muonic hydrogen (µp)
- muon mass ~ 270 m_e
- a muon orbits much closer than an electron to the hydrogen nucleus, where it is consequently much more sensitive to the size of the proton.

LETTERS

The size of the proton

Randolf Pohl¹, Aldo Antognini¹, François Nez², Fernando D. Amaro³, François Biraben², João M. R. Cardoso³, Daniel S. Covita^{3,4}, Andreas Dax⁵, Satish Dhawan⁵, Luis M. P. Fernandes³, Adolf Giesen⁶†, Thomas Graf⁶, Theodor W. Hänsch¹, Paul Indelicato², Lucile Julien², Cheng-Yang Kao⁷, Paul Knowles⁸, Eric-Olivier Le Bigot², Yi-Wei Liu⁷, José A. M. Lopes³, Livia Ludhova⁸, Cristina M. B. Monteiro³, Françoise Mulhauser⁸†, Tobias Nebel¹, Paul Rabinowitz⁹, Joaquim M. F. dos Santos³, Lukas A. Schaller⁸, Karsten Schuhmann¹⁰, Catherine Schwob², David Taqqu¹¹, João F. C. A. Veloso⁴ & Franz Kottmann¹²

degeneracy

- energy only depends on nn = k + l + 1
- since k is an integer, the number of possible k is n (from l=0, 1,n-1)
- for each l, there are 2l+1 states (m=-l,l)
- total degeneracy

$$\sum_{l=0}^{n-1} 2l + 1 = n^2$$

spectrum

n=4 = I=3 = I=2 = I=1 - I=0 n=3 = I=2 = I=1 - I=0

n=2 === l=1 ---- l=0

n=1 _____ l=0 k=0 k=1 k=2 k=3

ground state

$$\frac{a_{k+1}}{a_k} = \frac{k+l}{(k+1)(k+2l+2)}$$

• only a_0 exists radial $H(\rho) = 1$

angular

 $Y_{00} = \text{cosntant}$

 $R(\rho) = e^{ho/2}$

Ist excited state

•
$$n=2, l=0 (k=1)$$
 $\frac{a_{k+1}}{a_k} = \frac{k+l-1}{(k+1)(k+2l+2)}$
 $a_0 = 1$ radial angular
 $a_1 = -\frac{1}{2}$ $H(\rho) = 1 - \frac{\rho}{2}$ Y_{00}
• $n=2, l=1 (k=0)$ radial angular
 $H(\rho) = 1$ Y_{11}, Y_{10}, Y_{1-1}

2nd excited state

•
$$n=3, l=0 \ (k=2)$$

 $a_{0}=1$
 $a_{1}=-1$
 $a_{2}=\frac{1}{6}$
 $a_{3}=0$
 $H(\rho)=1-\rho+\frac{\rho^{2}}{6}$
 $a_{0}=1$
 $a_{0}=1$
 $a_{1}=-\frac{1}{4}$
 $H(\rho)=1-\frac{\rho}{4}$
 Y_{11},Y_{10},Y_{1-1}
 $a_{2}=0$

associate Lagurre polynomials

• The radial eigenfunctions are called associate Lagurre polynomials

 $H(\rho) = L_{n-l-1}^{(2l+1)}(\rho)$

$$L_n^{\alpha}(\rho) = \sum_{m=0}^{\infty} \begin{pmatrix} n+\alpha \\ n-m \end{pmatrix} \frac{(-\rho)^m}{m!}$$

n	1	m _l	R(r)	$\Theta(\theta)$	$\Phi(\phi)$
1	0	0	$\frac{2}{a_0^{3/2}}e^{-r/a_0}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2\pi}}$
2	0	0	$\frac{1}{(2a_0)^{3/2}} \left(2 - \frac{r}{a_0}\right) e^{-r/2a_0}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2\pi}}$
2	1	0	$\frac{1}{\sqrt{3}(2a_0)^{3/2}}\frac{r}{a_0}e^{-r/2a_0}$	$\sqrt{\frac{3}{2}}\cos\theta$	$\frac{1}{\sqrt{2\pi}}$
2	1	±1	$\frac{1}{\sqrt{3}(2a_0)^{3/2}}\frac{r}{a_0}e^{-r/2a_0}$	$\pm \frac{\sqrt{3}}{2}\sin\theta$	$\frac{1}{\sqrt{2\pi}}e^{\pm i\phi}$
3	0	0	$\frac{2}{(3a_0)^{3/2}} \left(1 - \frac{2r}{3a_0} + \frac{2r^2}{27a_0^2} \right) e^{-r/3a_0}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2\pi}}$
3	1	0	$\frac{8}{9\sqrt{2}(3a_0)^{3/2}} \left(\frac{r}{a_0} - \frac{r^2}{6a_0^2}\right) e^{-r/3a_0}$	$\sqrt{\frac{3}{2}}\cos\theta$	$\frac{1}{\sqrt{2\pi}}$
3	1	±1	$\frac{8}{9\sqrt{2}(3a_0)^{3/2}} \left(\frac{r}{a_0} - \frac{r^2}{6a_0^2}\right) e^{-r/3a_0}$	$\pm \frac{\sqrt{3}}{2}\sin\theta$	$\frac{1}{\sqrt{2\pi}}e^{\pm i\phi}$
3	2	0	$\frac{4}{27\sqrt{10}(3a_0)^{3/2}}\frac{r^2}{a_0^2}e^{-r/3a_0}$	$\sqrt{\frac{5}{8}}(3\cos^2\theta - 1)$	$\frac{1}{\sqrt{2\pi}}$
3	2	±1	$\frac{4}{27\sqrt{10}(3a_0)^{3/2}}\frac{r^2}{a_0^2}e^{-r/3a_0}$	$\mp \sqrt{\frac{15}{4}} \sin \theta \cos \theta$	$\frac{1}{\sqrt{2\pi}}e^{\pm i\phi}$
3	2	±2	$\frac{4}{27\sqrt{10}(3a_0)^{3/2}}\frac{r^2}{a_0^2}e^{-r/3a_0}$	$\frac{\sqrt{15}}{4}\sin^2\theta$	$\frac{1}{\sqrt{2\pi}}e^{\pm 2i\phi}$

http://ne.phys.kyushu-u.ac.jp/seminar/MicroWorld2_E/ 2Part3_E/2P32_E/hydrogen_atom_E.htm

