
Two level system



Interferometers

• Mach–Zehnder interferometer
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Fig. 2.1 Layout of a Mach–Zehnder interferometer. Light in the input beam is divided into two beams,
which are later recombined. Light sensors measure the intensities of the two output beams.

amplitude. Each beam in our single-photon interferometer experiment will have an ampli-
tude α, and the probability P that a detector would find the photon there (if we were to
introduce such a detector) is just

P = |α|2 . (2.1)

Suppose at some stage of our interferometer we know for sure that the photon must be
in one of two beams, which have amplitudes α and β respectively. Then it follows that
|α|2 + |β|2 = 1.

Complex amplitudes

One important kind of device that we can introduce into a beam is called a phase shifter.
This could simply be a glass plate through which the beam travels. A phase shifter does
not alter the probability that the photon is found in the beam, so the magnitude |α| is not
changed. However, the phase of α can be altered. By introducing a particular thickness δ

of glass, we can change the amplitude from α to −α. (The exact value of δ depends on the
index of refraction of the glass and the wavelength of the light.) This change in phase is
highly significant, for it can turn constructive interference into destructive interference at a
later stage of the interferometer.

If we have two such plates, or a single plate with thickness 2δ, the amplitude will
become −(−α) = α, and the original amplitude is restored. But suppose we have a plate
of thickness δ/2? This plate would produce a change the amplitude α such that (1) the
magnitude |α| is still the same, and (2) if the change were performed twice, the phase
would be multiplied by −1.

Glass plates can be made in a continuous range of thicknesses, producing a continuous
range of phase shifts. For this to be possible, the beam phases α must be complex quantities,
with both real and imaginary parts. A plate with thickness δ/2 may multiply the amplitude
by a factor of i =

√
−1. This does not change the magnitude of the complex phase α, since

|α| = |iα|. Two such plates (or a single plate of thickness δ) multiply the phase by i2 = −1,
as required.

α 2 + β 2 = 1

p = β 2

p = α 2



 phase shifter
• A phase shifter alter α to eiφα without 

altering the probability that the photon is 
found in the beam.
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Fig. 2.2 Two important interferometer components. The photon detector D will register the presence of a
photon in the beam with probability P = |α|2, where α is the probability amplitude. A phase shift
of φ changes the amplitude from α to eiφα.

In general, a glass plate of some thickness will multiply the amplitude of the beam by
eiφ , where φ (the phase shift) is proportional to the thickness of the glass. Changing α to
−α could be accomplished by phase shifters with φ = π , 3π , 5π , and so on. A phase shift
of φ does not change the probability that the photon is found in the beam, since for any α,
see Fig. 2.2,2 ∣∣eiφα

∣∣2 = |α|2 . (2.2)
The fact that quantum probability amplitudes are complex quantities is one of the oddest

facts about quantum mechanics. Mathematicians introduced complex numbers in the 16th
Century to help solve certain algebraic problems. Such numbers are often viewed as highly
abstract entities, little connected to the physical world. The number i is, after all, said to be
“imaginary.” Complex numbers are sometimes used as an algebraic shortcut in Newtonian
mechanics or electromagnetism. But in quantum mechanics, complex numbers are not just
a convenient trick; they are inescapable and full of significance.

Exercise 2.1 Remind yourself of the rules of complex arithmetic. If α∗ denotes the complex
conjugate of α, show

(a) |α|2 = α∗α.
(b) α + α∗ = 2ℜ(α).
(c) For real φ,

(
eiφ)∗ = e−iφ .

Exercise 2.2

(a) Suppose δ is the smallest thickness of glass that produces a phase shift of π – in other
words, that multiplies the phase by −1. What is the phase shift if the glass plate has a
thickness of δ/5?

(b) Suppose δ is the next-to-smallest thickness of glass that produces the same change in
phase (i.e. multiplying the phase by −1). What is the smallest thickness that would do
so? What phase shift would be produced by a plate of thickness δ/5?

The beam amplitudes in an interferometer obey the principle of superposition. We will
illustrate this with a simple example. Suppose at some stage of the interferometer, there

2 Anything that changes the optical path length of the beam, including a distance of empty space, will act as
a phase shifter. In our simplified treatment here, we will ignore the effect of distance and think of all phase
shifters as discrete objects that can be either put into or left out of the interferometer beam.
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Fig. 2.3 A graphical representation of Eq. 2.4, showing a superposition of situation A and situation B.

are just two beams available for the photon, which we will call the “upper” beam and the
“lower” beam. Consider two possible physical situations, denoted A and B. In situation A,
the photon is certainly in the upper beam. The probability amplitude for this beam is 1 and
the amplitude for the lower beam is 0. (The upper beam amplitude could be anything of the
form eiφ , but we will consider the simplest case.) In situation B, the roles are reversed: the
upper amplitude is 0 and the lower is 1, and so the photon is certainly in the lower beam.

The principle of superposition means that the existence of these two situations implies the
existence of many other situations in which the beam amplitudes are linear combinations of
the assignments for A and B. Given complex coefficients α and β, then there is a possible
physical situation which we can formally write as

α (situation A) + β (situation B) . (2.3)

In this combined situation, the amplitude for the upper beam is just α · 1 + β · 0 = α, while
the lower beam amplitude is α · 0 + β · 1 = β. Of course, to maintain a proper assignment
of probabilities, we will have to require that |α|2 + |β|2 = 1.

This is much easier to express if we describe each situation by a column vector whose
entries are the beam amplitudes. Then the first situation could be written

( 1
0
)

and the second
one

( 0
1
)
. The principle of superposition tells us that

(
α

β

)
= α

(
1
0

)
+ β

(
0
1

)
, (2.4)

is also a possible physical situation, provided |α|2+|β|2 = 1, see Fig. 2.3 for an illustration.
From this we note, first, that a physical situation for the photon in the interferometer can
be summarized by a vector whose components are probability amplitudes. Second, the
principle of superposition means that a complex linear combination of two such vectors
also represents a possible physical situation, provided the amplitudes satisfy a normalization
condition (meaning that all probabilities must add up to one).

Beamsplitters

Now we turn our attention to a key element of an interferometer, the beamsplitter. This is
a device that takes an input beam and splits it into two beams of lower intensity. A typical
beamsplitter is a half-silvered mirror. A beam incident on such a mirror will produce both
a reflected beam and a transmitted beam, each having half the intensity of the original.
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•  input beams of unit amplitude produce 
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• express in the amplitude-vector notation

19 The photon in the interferometer

Fig. 2.4 At beamsplitter BS, input beams of unit amplitude produce output beams with amplitudes w, x, y,
and z.

Fig. 2.5 The general situation for the beamsplitter BS. Input amplitudes α and β are transformed into
output amplitudes α′ and β ′, each of which is a linear combination of the input amplitudes.

What is the effect of a beamsplitter on the probability amplitudes when the incident
beam has only a single photon? Figure 2.4 summarizes. There are two possible input beams
for the beamsplitter. For an upper input beam with amplitude 1, we denote the resulting
reflected and transmitted beam amplitudes by w and x respectively. A lower input beam
with amplitude 1 yields output beam amplitudes y and z, as shown. If the beamsplitter is
a half-silvered mirror, then the probability that the photon is reflected or transmitted at the
mirror is one-half. That is,

|w|2 = |x|2 = |y|2 = |z|2 = 1
2

. (2.5)

Now we can apply the principle of superposition to find how the beamsplitter works
for situations in which the photon could be in either input beam. Suppose α and β are
the amplitudes for the upper and lower input beam. The beamsplitter transforms these into
amplitudes α′ and β ′ for the corresponding output beams. By superposition, these are

α′ = wα + yβ,
β ′ = xα + zβ, (2.6)

as shown in Fig. 2.5. The relation between input and output amplitudes is easy to express
in the amplitude-vector notation introduced above. It is

(
α

β

)
−→

(
α′

β ′

)
=

(
w y
x z

)(
α

β

)
. (2.7)

This is pretty neat. We represent the photon amplitudes by column vectors
(α

β

)
and

(α′
β ′

)
.

The beamsplitter is described by the 2 × 2 matrix
( w y

x z
)
. The action of the beamsplitter on

the input amplitudes then corresponds to simple matrix multiplication.
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Probability conservation

• the probability that the photon is reflected 
or transmitted are the same

• conservation of probability requires that if 
constructive interference happens in some 
places, destructive interference must 
happen elsewhere

w 2 = x 2 = y 2 = z 2 = 1
2
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1
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Fig. 2.7 Representations of various linear optical elements in an interferometer.

Fig. 2.8 The Mach–Zehnder interferometer. Compare Fig. 2.6.

Obviously, 1v = v for any amplitude vector v.
We can represent each of these graphically using a modification of our previous diagrams.

From now on we will draw the upper and lower beam paths as parallel lines, except where
they are brought together at a beamsplitter or a beam crossing. The photon is assumed to
go from left to right, see Fig. 2.7 .4

What happens when the basic optical elements are assembled into a larger experiment?
In a diagram, we simply string the pieces together in sequence, as in Fig. 2.8 . How can we
describe this sort of interferometer arrangement mathematically? Suppose a pair of beams
with amplitude vector v pass through three optical elements. The first is described by a
matrix R, the second by S, and the third by T. To find the final amplitude vector v′, we
must first multiply v by R, then by S, then by T:

v′ = TSRv. (2.16)

The effect of the entire complex apparatus is represented by a single 2 × 2 matrix, the
product TSR. This product is a sequence in time of successive transformations of the
amplitude vector for the beams, with the time order from right to left: R occurs first and T
occurs last. To put it another way, the order of the matrices in the product is the opposite of
the order of the corresponding elements in our left-to-right diagrams.

Exercise 2.7 Write down a matrix product that represents the Mach–Zehnder interferometer
shown in Fig. 2.8 . (You may ignore the photon detectors at the end.)

4 Do not be worried by the fact that our beams no longer go in straight lines in our diagrams. The diagrams are
merely schematics of a real optical apparatus. But as a matter of fact, we can build interferometers in which the
beams are guided in curved paths by optical fibers.
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Mach–Zehnder interferometer
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Fig. 2.6 A Mach–Zehnder interferometer. Compare Fig. 2.1.

it undergoes a phase shift of π , but other reflected and transmitted beams have zero net
phase shift.

This accords with classical wave optics. A real half-silvered mirror is a slab of glass with
a very thin metallic coating on one side. When light is reflected at an interface, the wave
picks up a π phase shift whenever the incident beam is coming from a medium of lower
refractive index to one of higher index – for instance, from air to glass. Thus, the beam that
is reflected on the metal coating from outside the glass gets a negative sign, but not the one
that reflects from the inside.3

When we include a balanced beamsplitter in our calculations, we will have to be careful
to indicate on which side the reflected beam acquires the negative sign. In diagrams, we will
do this by placing a dot (•) on one side of the beamsplitter. The reflected beam amplitude
on the dotted side is multiplied by −1.

Consider Fig. 2.6, a diagram of the Mach–Zehnder interferometer sketched in Fig. 2.1
above. Two balanced beamsplitters BS1 and BS2 are present, as are a pair of mirrors
(both labelled M) and a pair of photon detectors designated D0 and D1. A phase shifter is
present on one of the beams, which introduces a phase shift of φ. We send photons into the
interferometer along just one of the input beams, so that the amplitude of that beam can be
taken to be 1.

Exercise 2.5 Consider the Mach–Zehnder interferometer set-up in Fig. 2.6, and suppose
φ = 0.

(a) Ignoring any effects of the mirrors M, show that the probabilities P0 and P1 of the
photon being detected by D0 and D1, respectively, are just 1 and 0. In other words,
there is constructive interference for D0 and destructive interference for D1.

(b) Is your answer in part (a) changed if you take into account that reflection from a mirror
M introduces a phase shift of π into that beam?

See also Problem 2.1.

3 For simplicity we are neglecting other phase shifts due to the thickness of the glass. However, if these are
arranged to be integer multiples of 2π , or if the beamsplitter is built so that all beams undergo exactly the same
phase shifts, these may be ignored.

23 The photon in the interferometer

Fig. 2.7 Representations of various linear optical elements in an interferometer.

Fig. 2.8 The Mach–Zehnder interferometer. Compare Fig. 2.6.

Obviously, 1v = v for any amplitude vector v.
We can represent each of these graphically using a modification of our previous diagrams.

From now on we will draw the upper and lower beam paths as parallel lines, except where
they are brought together at a beamsplitter or a beam crossing. The photon is assumed to
go from left to right, see Fig. 2.7 .4

What happens when the basic optical elements are assembled into a larger experiment?
In a diagram, we simply string the pieces together in sequence, as in Fig. 2.8 . How can we
describe this sort of interferometer arrangement mathematically? Suppose a pair of beams
with amplitude vector v pass through three optical elements. The first is described by a
matrix R, the second by S, and the third by T. To find the final amplitude vector v′, we
must first multiply v by R, then by S, then by T:

v′ = TSRv. (2.16)

The effect of the entire complex apparatus is represented by a single 2 × 2 matrix, the
product TSR. This product is a sequence in time of successive transformations of the
amplitude vector for the beams, with the time order from right to left: R occurs first and T
occurs last. To put it another way, the order of the matrices in the product is the opposite of
the order of the corresponding elements in our left-to-right diagrams.

Exercise 2.7 Write down a matrix product that represents the Mach–Zehnder interferometer
shown in Fig. 2.8 . (You may ignore the photon detectors at the end.)

4 Do not be worried by the fact that our beams no longer go in straight lines in our diagrams. The diagrams are
merely schematics of a real optical apparatus. But as a matter of fact, we can build interferometers in which the
beams are guided in curved paths by optical fibers.



interference revisit
• consider the simplified Mach–Zehnder 

arrangement

• the matrix representation of the apparatus

2 6 Qubits

Exercise 2.14 Here is what we have proved: If R is to preserve the normalization of
probabilities for any input v, then it must be unitary.

Now you prove the (much easier) converse: If R is unitary, then it will preserve this
normalization for any input v. (Be sure that you understand the distinction between these
statements!)

We can further show that any unitary 2 × 2 matrix R may be physically realized as an
interferometer set-up made out of beam splitters and phase-shifters, see Problem 2.3 .

Testing bombs

The components of an interferometer do not register the passage of a photon, so that
the photon remains informationally isolated. This is why the beams exhibit interference.
Consider, for example, the simplified Mach–Zehnder arrangement in Fig. 2.9 . The photon
is introduced along the lower beam, so the input amplitude vector can be taken to be

( 0
1
)
.

If nothing else is introduced into the apparatus, the matrix describing the interferometer’s
effect is just

BlBu =
(

0 1
−1 0

)
. (2.25)

The output amplitude vector is thus

BlBuv=
(

0 1
−1 0

)(
0
1

)
=

(
1
0

)
. (2.26)

Exercise 2.15 Check this matrix arithmetic.

Therefore, the photon will always reach the upper detector D0. The probabilities are

outcome P
photon reaches D0 1
photon reaches D1 0.

There is constructive interference in the beam that leads to D0, and destructive interference
in the beam that leads to D1.

Now suppose that we change the interferometer slightly by sticking a hand into the lower
beam at the point A. For simplicity, imagine that the photon is absorbed if it hits the hand.

Fig. 2.9 Simplified Mach–Zehnder interferometer.
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27 The photon in the interferometer

This produces a physical change in the hand that could in principle be detected (“Ow!”).
Thus, the hand is a photon detector that measures whether or not the photon travels along
the lower beam at A.

This will, of course, destroy any interference effects. If we send a photon into the
apparatus, it has a 50% probability of striking the hand. If it travels along the upper beam
instead, when it reaches the second beamsplitter it will be equally likely to go toward D0
and D1. In short, we have

outcome P

photon reaches D0 1/4
photon reaches D1 1/4
photon hits hand 1/2.

Notice that, by blocking one beam with a hand, we have actually increased the probability
that the photon is detected by D1.

This paradoxical result is the basis for a remarkable thought-experiment proposed by
Avshalom Elitzur and Lev Vaidman in 1993. Imagine a factory that produces a type of
bomb triggered by light. So sensitive is the trigger that the passage of a single photon
through its mechanism will explode a bomb.

Because of manufacturing defects, however, many bombs come off the assembly line
without working triggers. Photons pass through these mechanisms without being registered
at all, and the bombs are duds. The factory managers want to be able tell for sure that at
least some bombs are in working order. How can they do this? Of course, if they send a
photon through a given bomb, and it blows up, then they can be sure that the bomb was in
working order – but they have also destroyed that bomb. What the managers want is a way
to identify bombs that are explosive, but are not yet exploded. Since the bomb triggers are
set off even by one photon, this appears impossible.

But in fact, the interferometer arrangement in Fig. 2.9 can do the job. A bomb is placed
at the point A and then one photon is sent through. If the bomb is a dud, it will not register
the passage of the photon, and there will be interference effects. If the bomb is working, it
will function as a photon detector on the lower path. The results are

Bomb is a dud

outcome P

photon reaches D0 1
photon reaches D1 0
bomb explodes 0

Bomb is working

outcome P

photon reaches D0 1/4
photon reaches D1 1/4
bomb explodes 1/2.

Suppose an unknown bomb is placed in the apparatus and one photon is sent through. If
the bomb explodes, then it was in working order, but this bomb is now lost. If the photon
is detected by D0, the test is inconclusive and may be repeated.5 But if the photon ever
arrives at D1, then the managers know that the unexploded bomb is in working order, even
though the bomb never detects the passage of the photon.

5 If the photon always arrives at D0 during many trials, the factory managers may confidently conclude that the
bomb is a dud.
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set off even by one photon, this appears impossible.

But in fact, the interferometer arrangement in Fig. 2.9 can do the job. A bomb is placed
at the point A and then one photon is sent through. If the bomb is a dud, it will not register
the passage of the photon, and there will be interference effects. If the bomb is working, it
will function as a photon detector on the lower path. The results are

Bomb is a dud

outcome P

photon reaches D0 1
photon reaches D1 0
bomb explodes 0

Bomb is working

outcome P

photon reaches D0 1/4
photon reaches D1 1/4
bomb explodes 1/2.

Suppose an unknown bomb is placed in the apparatus and one photon is sent through. If
the bomb explodes, then it was in working order, but this bomb is now lost. If the photon
is detected by D0, the test is inconclusive and may be repeated.5 But if the photon ever
arrives at D1, then the managers know that the unexploded bomb is in working order, even
though the bomb never detects the passage of the photon.

5 If the photon always arrives at D0 during many trials, the factory managers may confidently conclude that the
bomb is a dud.
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Exercise 2.14 Here is what we have proved: If R is to preserve the normalization of
probabilities for any input v, then it must be unitary.

Now you prove the (much easier) converse: If R is unitary, then it will preserve this
normalization for any input v. (Be sure that you understand the distinction between these
statements!)

We can further show that any unitary 2 × 2 matrix R may be physically realized as an
interferometer set-up made out of beam splitters and phase-shifters, see Problem 2.3 .

Testing bombs

The components of an interferometer do not register the passage of a photon, so that
the photon remains informationally isolated. This is why the beams exhibit interference.
Consider, for example, the simplified Mach–Zehnder arrangement in Fig. 2.9 . The photon
is introduced along the lower beam, so the input amplitude vector can be taken to be

( 0
1
)
.

If nothing else is introduced into the apparatus, the matrix describing the interferometer’s
effect is just

BlBu =
(

0 1
−1 0

)
. (2.25)

The output amplitude vector is thus

BlBuv=
(

0 1
−1 0

)(
0
1

)
=

(
1
0

)
. (2.26)

Exercise 2.15 Check this matrix arithmetic.

Therefore, the photon will always reach the upper detector D0. The probabilities are

outcome P
photon reaches D0 1
photon reaches D1 0.

There is constructive interference in the beam that leads to D0, and destructive interference
in the beam that leads to D1.

Now suppose that we change the interferometer slightly by sticking a hand into the lower
beam at the point A. For simplicity, imagine that the photon is absorbed if it hits the hand.

Fig. 2.9 Simplified Mach–Zehnder interferometer.



spin 1/2 system
• A particle may have an intrinsic angular 

momentum called spin

• Electrons, protons, and neutrons are all 
examples of spin-1/2 particles

• If one measure the z-component Sz(or Sx, 
Sy) of the spin angular momentum for one 
of these particles, he gets

Sz = ± !
2



Stern-Gerlach experiment
• A stream of atoms moving from the right 

passes between the asymmetric poles of a 
magnet. Particles with different values of μz 
are deflected in different directions. The final 
position of the atom determines its μz
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Fig. 2.10 The Stern–Gerlach experiment. A stream of atoms moving from the right passes between the
asymmetric poles of a magnet. Particles with different values of µz are deflected in different
directions. The final position of the atom determines its µz.

Amplitude vectors

In the two-beam interferometer, the photon can be found in one of two distinct beams. A
spin-1/2 particle can be found to have one of two distinct values for Sz. The same quantum
rules that apply to the photon also apply to the spin-1/2 particle. That is, in addition to
the “spin up” and “spin down” situations, there are also situations which are complex
superpositions of these two:

α (spin up) + β (spin down) . (2.30)

The coefficients α and β are probability amplitudes for finding the value of Sz to be +!/2
or −!/2, respectively. We can represent any of these superpositions by a column vector of
the probability amplitudes. The amplitude vectors

z+ =
(

1
0

)
and z− =

(
0
1

)
, (2.31)

represent situations where the spin component Sz definitely has either its positive or negative
possible value. The superposition vector

(
α

β

)
= αz+ + βz−, (2.32)

is also possible, but what does it mean?
It turns out6 that the superposition vectors describe situations in which some spin com-

ponent other than Sz has a definite value. For example, suppose we were to consider Sx.
The amplitude vectors

x+ = 1√
2

(
1
1

)
and x− = 1√

2

(
1

−1

)
, (2.33)

6 What do we mean by “It turns out”? When we use this phrase, we may be appealing to theoretical developments
that we have not yet discussed, or to experimental results, or to both. Physics, unlike mathematics, cannot really
be developed in a linear way from a set of explicit axioms. The justification for any theory lies in experiments,
but experiments cannot be understood without a theory! The best we can hope for in empirical science is a
consistent, testable, mutually reinforcing system of ideas and observations. When we say “It turns out,” we are
simply opening a door into that system.

γ is gyromagnetic ratio!µ = γ
!
S

E = −
!µ ⋅
!
B



the spin state

• superpositions of spin-up and spin-down 
states 

z+ = 1
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       z− = 0
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Bloch sphere
z

x

y
θ

why?

x+ = 1
2
z+ + 1

2
z−

x− = 1
2
z+ − 1

2
z−

x− x+ = 0

z+ x+
2
= z− x+

2
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Pauli matrices
• Hermitian operators in 2 level systems

• Commutation relations

• They are anti-commute

S = 1
2
!σ

σ x =
0 1
1 0

⎛
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0 −i
i 0
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σ x
2 =σ y

2 =σ z
2 = 1 0

0 1
⎛
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eigenstates of Sx
• To find the eigenstates for 

• The eigenequation

• The eigenevalue
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Projection operator
• the projection to +x and -x direction

x+ x+ = 1
2
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2
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spin filters

• Sz and Sx are complementary quantities
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Fig. 2.11 A Stern–Gerlach apparatus.

A very simple sort of observation would be to block one of the two beams, say the one
corresponding to Sz = −!/2. The value of Sz is registered by whether or not the atom hits
the barrier. This arrangement is not simply a measurement of Sz, but also an Sz filter. Atoms
with Sz = +!/2 are permitted to pass, but other atoms are stopped.

If we prepare a particle in the state |z−⟩ and send it through our apparatus, then it is
blocked. If we prepare it in |z+⟩, then it will certainly pass through the apparatus. What will
be its state afterwards? This will in general depend on the detailed physics of the apparatus,
since magnetic fields and so forth might produce changes in the spin of the particle. For
now we will consider the simplest case, in which the spin is unchanged: the particle will
emerge with spin state |z+⟩.

Now suppose we introduce a particle in the state |x+⟩, given in Eq. 2.41. Such a particle
will have a probability 1/2 of being blocked and probability 1/2 of passing through the
apparatus. If the particle passes through, what will be its state afterwards?

We might be tempted to say that the spin will still be |x+⟩, since we have said that the spin
is “unchanged” by the apparatus. But |x+⟩ is a superposition of |z+⟩ and |z−⟩ – in essence,
an interference of these two states – and that interference cannot survive a measurement of
Sz. We conclude instead that the final state of the spin, given that it passes through our Sz
filter, is just |z+⟩.

This means that a second measurement of Sz would produce exactly the same result as
the first measurement.8 To put it a different way, consider two Sz filters in succession. The
first one passes Sz = +!/2 and the second one passes Sz = −!/2, as shown in Fig. 2.12.
Any particle that passes the first filter is then in a state |z+⟩, and so has probability zero for
passing the second filter.

Naively, we might think that a filter merely removes particles which do not meet some
specified criterion. If this were an adequate picture of how our filters work, then it would
follow that adding additional filters to a series could never increase the likelihood that a
particle would pass all the way through. This is indeed true if we add filters to the end of
the series. But what if we insert one in the middle?

Let us modify the arrangement in Fig. 2.12 by inserting an Sx filter between the two Sz
filters. This is shown in Fig. 2.13. A particle that passes through the first filter will then
be in a state |z+⟩. In this state, it will pass the second filter with probability 1/2, and if it
does, it will afterwards have a spin state |x+⟩. But a particle with this state will have some
chance (again, probability 1/2) of passing the final filter and ending up in the state |z−⟩. By

8 This observation, that successive measurements of the same observable quantity will yield identical results, is
sometimes elevated to an axiom of quantum theory. However, as we will see in Section 4.3, this is only true in
the most ideal cases, and is not a general fact about actual measurement procedures.
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Fig. 2.12 Successive Stern–Gerlach filters for opposite values of Sz. The probability of passing through both
filters is zero.

Fig. 2.13 If we insert an Sx filter between two opposite Sz filters, we can increase the probability of passing
the whole series.

inserting an extra filter, we have increased the probability that the particle passes the whole
series.9

Therefore, the filters, and the measurements they are based on, do more than just “read
off” the value of some variable. They also have an effect on the state of the system that is
being observed. A particle prepared with spin state |z+⟩ and subjected to a measurement of
Sx, will afterwards be found in one of the states |x±⟩. The particle will retain no “memory”
of its previous commitment to a definite value of Sz.

This is because Sz and Sx are complementary quantities. We must orient our Stern–Gerlach
magnets one way or the other, choosing one spin measurement or the other. Measuring Sx
precludes measuring Sz, and furthermore, any definite value of Sz the particle might have
carried is destroyed by the measurement of Sx.

Exercise 2.24 Suppose the particle starts out with a spin state of |x−⟩. What is the
probability that it will pass through all three filters in Fig. 2.13?

This has an interesting implication for the storage and retrieval of information using
quantum systems. Imagine representing one bit of information by the state of a spin-1/2
particle. A simple code would be

Signal Message
|z+⟩ 0
|z−⟩ 1.

When we wish to retrieve the information, all we need to do is measure Sz for the particle.
However, suppose we measure Sx instead? The result of this measurement would tell
us nothing at all about the bit encoded in the spin. Worse, once we have measured Sx,

9 This is quite similar to a simple lecture demonstration involving polarizing filters. Polarization is a property of
photons that is exactly analogous to particle spin. A polarizing filter blocks light of one polarization, but permits
light of the other (perpendicular) polarization to pass. No light can get through a pair of “crossed” polarizing
filters. But if a third tilted filter is introduced between the pair, some of the photons do pass through.
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filters. But if a third tilted filter is introduced between the pair, some of the photons do pass through.

Stern–Gerlach apparatus

Stern–Gerlach filters
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Bloch sphere

eigenstates of Sy
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some eigenstates
• To find the eigenstates for 

• The eigenequation 

• The eigenevalue

• for 
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rotation in θ
• Suppose we choose a 

direction in the xz-plane 
that is inclined at an 
angle θ from the z-axis.  
Then the amplitude 
vectors
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more eigenstates
• To find the eigenstates for 

• The eigenequation 

• The eigenevalue

• for 

Sφ = Sx cosφ + Sy sinφ = 0 e− iφ
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rotation in φ

eigenstates of
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General case
• Any rotation in θ and φ can 

be shown that
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rotation about z

can be viewed as the 
rotation about z of π

z

y
xalso called Pauli-Z gate
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rotation about x

rotation about x of π
y

x

also called Pauli-X gate
or NOT gate
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rotate about y
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rotation about y of π

also called Pauli-Y gate
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Hadamard (H) gate

• It maps                                     

• for other states, it acts as a rotation about 
z of π, followed by a rotation about y of  
π/2
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Phase gate
• Phase gates are defined

• when                               is Pauli-Z gate
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Square root of NOT gate

rotation about x of π/2 also called
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Energy levels and quantum states

• An atom generally has many different energy 
levels. In many experiments only two energy 
levels – usually the ground state and one 
excited state – play any significant role. In 
this case, we can adopt a simplified model, 
the two-level atom,37 Two-level atoms

Fig. 2.14 On the left is the energy level “ladder” for an imaginary atom with six energy levels included. The
jump (a) is accompanied by the emission of a photon with energy E4 − E1, while the transition
shown in (b) absorbs a photon having much lower energy E3 − E2. On the right, the much simpler
ladder of a two-level atom.

⟨E0 |E0 ⟩ = ⟨E1 |E1 ⟩ = 1,

⟨E0 |E1 ⟩ = 0. (2.47)

The principle of superposition tells us that there are other states as well formed by complex
linear combinations of these two. In general, then, the atom will be in a state

|ψ⟩ = α0 |E0⟩ + α1 |E1⟩ . (2.48)

The amplitudes αk = ⟨Ek |ψ ⟩. If the atom is in the state |ψ⟩, then a measurement of its
energy E will yield E0 with probability |α0|2 and E1 with probability |α1|2.

Exercise 2.25 Show that any state of the form eiφ |Ek⟩ is a state with definite energy Ek .

The early quantum physicists thought that an atom must always be “in” one or another
of its energy levels, and even today physicists, chemists, and others will often speak and
write in this way. (To see an example, go back a few paragraphs and re-read our description
of an atom “jumping” from one rung of the energy level ladder to another.) But it is not so!
Superpositions such as Eq. 2.48 are perfectly possible quantum states, which means that
we can have interference effects between different energy levels. We will have more to say
on this point a little later. For now, we need to explain why this important fact can so often
be ignored.

The superposition of energy levels in Eq. 2.48, with its potential for interference between
the levels, only makes sense provided that the two-level atom remains informationally
isolated. But if the atom emits a photon (with energy E1 − E0) then it has announced to
the world that its energy was E1 and has now become E0. Since the surroundings contain a
record (in the form of the photon) of the atom’s energy E, the superposition can no longer
apply. The same would be true if the atom absorbed a photon from its surroundings.

E1

E0



Time evolution
• In general, then, the atom will be in a state

• at t = 0 the state is |ψ(0)⟩ = |Ek⟩, then at a 
later time 

• probability Pu at time t 

stationary states

ψ =α E0 + β E1

ψ t( ) = e− iω kt Ek Ek = !ω k

Pu t( ) = u ψ t( ) 2
= u ψ t( ) 2

= Pu



time evolution

• the relative phases of the two terms will change

• As time progresses, the probability Pu(t) of the 
measurement outcome u changes from 1 to 0 
and then back to 1 again with an angular 
frequency 

ψ =α E0 + β E1 ψ t( ) =αe− iω0t E0 + βe− iω1t E1

ψ 0( ) = u = 1
2
E0 + 1

2
E1 ψ t( ) = 1

2
e− iω0t E0 + 1

2
e− iω1t E1

uψ t( ) =1
2
e− iω0t+e− iω1t( ) A 0( ) = a 0( ) = 1

B 0( ) = b 0( ) = 0

Pu t( ) = u ψ t( ) 2
= 1
4
e− iω0t + e− iω1t

2
= 1
2
1+ cosΔω 0t( )

Δω =ω1 −ω 0



• Precession of muon spin PRD73, 
072003(2006)

• Neutrino oscillation PRL100, 221803 
(2008)
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time evolution 
operator

•                        for an energy level state |Ek⟩

• U(t) acts on states in a linear way

• The product of time evolution operators

U t( ) Ek = e− iω kt Ek

U t( )ψ 0( ) = ψ t( )

U t2( ) =U t2 − t1( )U t1( )



Hamiltonian operator
• H|Ek⟩ = Ek |Ek⟩ for an energy level state |Ek⟩

•  H acts on states in a linear way.

• Schrödinger equation

ψ t( ) =αe− iω0t E0 + βe− iω1t E1

i! d
dt

ψ t( ) =αE0e
− iω0t E0 + βE1e

− iω1t E1 = H ψ t( )

i! d
dt

ψ t( ) = H ψ t( )



spin precession

• If the magnetic field points in the positive z-
direction

• Larmor frequency 

E = −γ BSz

Ω = γ B

ψ 0( ) = x+ = 1
2
z+ + 1

2
z−

ψ t( ) =αeiΩt z+ + βe− iΩt z−

Px+ t( ) = x+ ψ t( ) 2
= 1
2
1+ cosΩt( )



nuclear spin resonance

• a proton has a gyromagnetic ratio            
γp = 2.675 × 108 s−1T−1

• Larmor frequency at B=10T

Ω = γ pB =  2.675 ×  109  s−1

frequency =425.7 MHz

Ω = γ pB =  2.675 ×  109  s−1



Addition of two spins
• Total spin

• commutation relation

• Therefor it is easy to find total spin S 
satisfies the commutation relation of an 
angular momentum

S = S1 + S2

[Sx, Sy] = [S1x + S2x, S1y + S2y] = [S1x, S1y] + [S2x, S2y]
= iℏS1z + iℏS2z = iℏSz



product states
• The possible states are (product states)

• calculate the eigenvalues

| ↑ ⟩ | ↑ ⟩ | ↑ ⟩ | ↓ ⟩ | ↓ ⟩ | ↑ ⟩ | ↓ ⟩ | ↓ ⟩

Sz | ↑ ⟩ | ↑ ⟩ = (S1z + S2z) | ↑ ⟩ | ↑ ⟩

= (S1z | ↑ ⟩) | ↑ ⟩ + | ↑ ⟩(S2z | ↑ ⟩)
= ℏ | ↑ ⟩ | ↑ ⟩

Sz | ↑ ⟩ | ↓ ⟩ = Sz | ↓ ⟩ | ↑ ⟩ = 0

Sz | ↓ ⟩ | ↓ ⟩ = − ℏ ↓ ⟩ | ↓ ⟩

• Two zero Sz product states



2-bit gate

ibm q: beginer’s guide



Entangled states

• product states • Bell states

1

2
( | ↑ ⟩ | ↑ ⟩ + | ↓ ⟩ | ↓ ⟩)| ↑ ⟩ | ↑ ⟩

| ↑ ⟩ | ↓ ⟩

| ↓ ⟩ | ↑ ⟩

| ↓ ⟩ | ↓ ⟩

1

2
( | ↑ ⟩ | ↑ ⟩ − | ↓ ⟩ | ↓ ⟩)

1

2
( | ↑ ⟩ | ↓ ⟩ + | ↓ ⟩ | ↑ ⟩)

1

2
( | ↑ ⟩ | ↓ ⟩ − | ↓ ⟩ | ↑ ⟩)



spin entanglement

• First we do Sx measurement on electron 1, 
we have 50% to get `+’ and 50% to get `-’

• then we do Sx measurement on electron 2, 
the result is 100% same to the result of 
electron 1.

1

2
( | ↑ ⟩ | ↓ ⟩ + | ↓ ⟩ | ↑ ⟩)



How does it work?

• entangled state

• the measurement of Sx1 project the state to 
an eigenstate of Sx1

• The project operator

|Ψ⟩ =
1

2 [(1
0)

1
(1

0)
2

+ (0
1)

1
(0

1)
2]

S1x =
1

2 (0 1
1 0)

1

P1x( + ) = |x+⟩⟨x + | =
1
2 (1 1

1 1)
1



measurement
• Projection result

• The following measurement on Sx2 will only 
give `+’ result

P1x( + ) |Ψ⟩ =
1

2 2 (1 1
1 1)

1 [(1
0)

1
(1

0)
2

+ (0
1)

1
(0

1)
2]

=
1

2 2 (1
1)

1
(1

0)
2

+ (1
1)

1
(0

1)
2

=
1

2 2 (1
1)

1
(1

1)
2

= |Ψ′�⟩

S2x |Ψ′�⟩ =
ℏ

4 2 (0 1
1 0)

2
(1

1)
1

(1
1)

2

=
ℏ
2

|Ψ′�⟩



Ψ
Sx1

Sx2

Sx2

50%

50%

P1x ( + ) |Ψ⟩

P1x ( − ) |Ψ⟩

1

2 [(1
0)

1
(1

0)
2

+ (0
1)

1
(0

1)
2]

P1x ( + ) |Ψ⟩

P1x ( − ) |Ψ⟩

S1x =
ℏ
2

S1x =
ℏ
2

S1x = −
ℏ
2

S1x = −
ℏ
2



Bell state

Z-Z measurement

X-X measurement

1

2
( | ↑ ⟩ | ↑ ⟩ + | ↓ ⟩ | ↓ ⟩)



Computation result

Z-Z measurement

All in +z directionAll in -z direction



Computation result

X-X measurement

All in +x directionAll in -x direction



• Einstein’s comment: “spukhafte 
Fernwirkung” or "spooky action at a 
distance


