
Quantum Mechanics I

Ver. Sep 11



Fundamental concepts

•Complementarity

•Superposition

let’s consider these properties of the light



Wave-particle duality

• Einstein’s photon concept

 

E =ω,    p =k
 =1.054×10−34 J s

Planck’s constant

Confirmed by Compton’s experiment



Complementarity concept

states of the electromagnetic field 
with a definite number of 

photons, but the field strengths do 
not have definite values. 

states have well-defined field 
strengths, but 

not a definite number of 
photons. 

Compton’s 
radioactive source ideal laser  

PARTICLE WAVE



interference vs. path

• In any setup that allows 
light to traverse different 
paths, these paths can 
either be combined 
coherently to form an 
interference pattern

• the apparatus can be 
modified to determine 
which path is followed but 
this destroys the 
interference pattern. 

INTERFERENCE DETERMINISTIC PATH



diffraction of a plane wave 

grating

D  period

d slit
incident light

scattered light

Δα = λ D

δα = d D( )Δα



Now we look on one example 



U. Eichmann, et al.
Phys. Rev. Lett. 70, 2359 (1993). 

Events in which spin flip 
is excluded and the two 

possible photon paths are 
indistinguishable. 

Events in which one of the 
ions must have had a spin 
flip which determines the 

photon path. 



• The complementarity is resulted from 
simple mathematics



visibility of the interference 

ψ = aeikL1 + beikL2

ψ 2 = a2 + b2 + 2abcos kΔL( )

path 1

path 2

a

b

The visibility of the interference
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ψ max

2 − ψ min
2

ψ max
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2ab
a2 + b2



determination of path
• two detectors are placed 

just behind the holes

• they will register with 
rates proportional to 

• the difference in 
probability

path 1

path 2

a

b

Det 1

Det 2
a2,    b2

Δ = a
2 − b2

a2 + b2

V 2 + Δ2 = 1visibility of interference vs. 
determination of path Higher Δ, lower V



• More math: Fourier transform



Uncertainty principle
• The classical electric field 

• The theory of Fourier integrals tells us that 
the size of the region in k-space in which the 
Fourier amplitude a(k) is substantial is related 
to the size of the spatial region 

• the time that the packet takes to pass any 
point is related to the dispersion in frequency 

E r,t( ) = dkei k⋅r−ωt( )∫ a k( ) ω = ck,    k ⋅a = 0

ΔxiΔkj ≥ δ ij

ΔtΔω ≥1



Gaussian wavepacket
• wave function in x-space

• wave function in k-space

• intensity(probability density)
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2.2.2 The electron wave packet and dispersion

In the previous example, an electron in free space was described by traveling plane-wave
states that extended over all space but were well-defined points in k space. Obviously,
this is an extreme limit.

Suppose we wish to describe an electron at a particular average position in free
space as a sum of a number of plane-wave eigenstates. We can force the electron to
occupy a finite region of space by forming a wave packet from a continuum of plane-
wave eigenstates. The wave packet consists of the superposition of many eigenstates
that destructively interfere everywhere except in some localized region of space. For
simplicity, we start with a plane wave of momentum --hk0 in the x direction and create
a Gaussian pulse from this plane wave in such a way that at time t = 0

ψ(x, t = 0) = Aeik0x e−(x−x0)2/4"x2
(2.56)

where the amplitude is A = 1/(2π"x2)1/4, the mean position is 〈x〉 = x0, and a measure
of the spatial spread in the wave function is given by the value of "x . The probability
density at time t = 0 is just a normalized Gaussian function of standard deviation "x:

ψ∗(x, t = 0)ψ(x, t = 0) = |ψ(x, t = 0)|2 = A2e−(x−x0)2/2"x2
(2.57)

The Gaussian pulse contains a continuum of momentum components centered about the
original plane-wave momentum --hk0. To find the values of the momentum components
in the Gaussian pulse, we take the Fourier transform of the wave function ψ(x, t = 0).
This gives

ψ(k, t = 0) = 1
A
√

π
e−i(k−k0)x e−(k−k0)2"x2

(2.58)

The corresponding probability density in k space (momentum space) is given by

|ψ(k, t = 0)|2 = 1
A2π

e−(k−k0)22"x2 = 1
A2π

e−(k−k0)2/2"k2
(2.59)

where k0 is the average value of k, and a measure of the spread in the distribution
of k is given by the standard deviation "k = 1/2"x . Because the product "k"x =
1/2 is a constant, this indicates that localizing the Gaussian pulse in real space will
increase the width of the corresponding distribution in k space. Conversely, localizing
the Gaussian pulse in k space increases the width of the pulse in real space. Recognizing
that momentum p = --hk, we have

"p"x =
--h
2

(2.60)

which is an example of the uncertainty principle. Conjugate pairs of operators cannot
be measured to arbitrary accuracy. In this case, it is not possible to simultaneously
know the exact position of a particle and its momentum.
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ΔkΔx = 1
2



size of the 
spatial region

size of the 
region in k-space



• In physics, k is not merely a math object, but 
has physical meanings. It is the momentum of 
the photon.



Heisenberg uncertainty relations

• Once the ability to determine any object's 
momentum and energy is restricted by the 
uncertainty relations, those of all other objects 
with which it can, in principle, interact must also 
satisfy such restriction.(For example, to measure 
electron using light waves)

• Energy and momentum are conserved by any 
isolated systems on an event-by-event basis. 

 
ΔxiΔpj ≥δij  ΔEΔt ≥For photons



Bohr’s model of 
microscope

the electron recoiled by 
the photon 

scattered photon has the 
diffraction limit

Δpx = 2psin ′θ

Δx = λ sin ′θ

sin ′θ         is called 
numerical aperture



massive particles

• de Broglie wavelength

• dispersion relation

λ = h
p

E = p
2

2m

!! k( ) = !
2k 2

2m



non-linear dispersion
linear dispersion



Diffraction pattern produced by scattering electrons 
from the standing light wave created by two 
opposed lasers. 

D.L. Freimund, K. Afiatooni and H. Batelaan, 
Nature 413, 142 (2001) 



“Which path” experiment

• by varying the sensitivity of 
the detector the visibility of 
the oscillatory interference 
signal is affected

letters to nature
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temperature ⇥ � 80 mK and an a.c. emitter excitation voltage
V E ⇤ 10 �V. Under these conditions both coherence length (due
to unintentional dephasing) and mean free path for elastic scatter-
ing of the electrons exceed the entire size of the interferometer.

The collector current is related to the transmission probability
from emitter to collector, TEC, via the multiprobe conductance
formula9, IC ⇤ �2e2=h⇥TECV E. As stressed above, the dominant
contribution to TEC comes from the two direct paths, those going
from E to C through the two slits (depicted by the two dotted lines in
Fig. 1a; longer paths, resulting from multiple reflections from walls,
are much less probable. A phase difference between the two direct
paths, Da ⇤ 2p�=�0, is induced via the Ahoronov–Bohm effect
(for a review see ref. 10). Here � is the magnetic flux threaded
through the area, A, enclosed by these two paths and �0 ⇤ h=e is the
flux quantum. Consequently, the collector current oscillates as a
function of magnetic field B with a period DB ⇤ �0=A ⇤ 2:6 mT,
corresponding to a phase difference between the two paths equal to
2p, as seen in Fig. 2a.

Figure 1 The which-path device. a, Schematic description of the top electrodes

and contacts of the interferometer and the detector. The interferometer is

composed of three different regions, emitter E, collector C, and base B. The right

slit is in a formof a quantumdot, QD (with area 0:4 ⇤ 0:4 �m2) with a quantumpoint

contact, QPC, on its right side serving as a which-path detector. The excitation

voltage VE is applied between emitter and base. b, Top-view scanning electron

micrograph of the device. Scale bar, 1 �m. The GaAs-AlGaAs heterostructure

supports a high-mobility two-dimensional electron gas (2DEG) (with density

ns ⇤ 3:0 ⇤ 1011 cm⇥ 2 and low-temperature mobility � ⇤ 2:8 ⇤ 106 cm2 V⇥ 1 s⇥ 1)

formed 60nm beneath the surface. Potential barriers and narrow openings in

the plane of the 2DEG are induced by negatively biased miniature metal gates

deposited on the surface of the heterostructure, thus depleting the electrons

underneath the gates. A special lithographic technique, involving a metallic air

bridge, is used to contact the central gate that depletes the area between the two

slits (this serves also as plunger gate of the QD).

Figure 2 Conduction characteristics of the which-path device. a, Aharonov–

Bohm oscillations of the collector current IC with a period DB ⇤ �0=A ⇤ 2:6mT.

The solid line is measured with QPC drain source voltage Vd ⇤ 0 (which-path

detector turned off), while the dotted line, with a reduced visibility, is measured

with Vd ⇤ 100 �eV. (a.u., arbituary units.) b, The conductance of the QD, gQD, and

the transmission of the QPC nearby, Td, as a function of the plunger gate voltage,

Vp. The inset shows schematically the coupled structures. c, The induced

average change in the transmission probability of the QPC detector, DTd, due to

adding an electron to the QD as a function of Td. DTd is calculated by averaging

over several coulomb-blockage peaks. The reduced value of DTd near Td ⇤ 0 and

Td ⇤ 1 is a consequence of approaching the conductance plateaus.
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The suppression of Ahoronov–Bohm oscillations due to the
which-path detector depends on the effect an electron dwelling in
the QD has on the detector. We study the QD–QPC interaction by
means of a calibration device (seen in Fig. 2b inset), fabricated on
the same wafer, containing a QD and a QPC similar to these in the
which-path interferometer. The QD is tuned to the coulomb
blockade regime, having therefore well separated energy levels, by
adjusting the resistance of each of its two QPCs to be greater than
h/2e2. Each peak in the conductance of the QD, scanned by the
plunger gate voltage Vp (see Fig. 2b), is associated with adding a
single electron in the QD. Owing to the proximity between the QD
and QPC, the transmission probability of the QPC-detector Td, and
thus its conductance gd ¼ ð2e2=hÞTd, are affected by the potential of
the QD8. As the plunger gate voltage is being scanned between two
adjacent conductance peaks, with fixed charge in the QD, the
potential of the QD changes smoothly. However, when a conduc-
tance peak is being scanned, with an electron being added to the QD,
a faster and opposite change in the potential of the QD takes place,
on the scale of the peak width. Consequently, the potential of the
QPC, and therefore Td, are expected to show a saw-tooth-like
oscillations (with amplitude DTd), as indeed observed in the
experimental results in Fig. 2b (see also ref. 8).

We now consider the expected quantitative dephasing induced
by the WP detector. This has been treated recently by Aleiner
et al.11, Levinson12, Gurvitz13, and Imry14. Following ref. 4, we
write the entangled wavefunction of the whole system
(interferometer þ detector) as:

jwi ¼ jflie # jxlid þ eiDajfrie # jxrid ð1Þ

where jflie (jfrie) is the electronic partial wave in the left (right)
path, and jxlid (jxrid) represents the state of the detector coupled
to the left (right) partial electronic wave. The probability to find
the electron at the collector is found by summing over all
possible states of the detector (as the collector is sensitive only to
the electron position, regardless the state of the detector), TEC ¼
�i jhwjrCie # jxiidj2 where jrCie represents the state of an electron at
the collector. Assuming jxlid and jxrid are normalized one finds:

TEC ¼ jehfljrCiej
2 þ jehfrjrCiej

2 þ 2Re½eiDa
ehfljrCie⋅ehrCjfrie⋅dhxrjxlidÿ

ð2Þ

(where Re denotes real part) with the visibility of the interference
pattern,defined as the peak-to-valley value normalized by the
average value, being proportional to:

vd ¼ jdhxrjxlidj ð3Þ

Here vd represents which-path information that can be obtained
from the detector15, namely, the smaller vd is, the stronger is the
dephasing and the weaker is the visibility. In the extreme case, when
the detector determines unambiguously where the electron is, both
detector states jxlid and jxrid are orthogonal and the Ahoronov–
Bohm interference vanishes.

How certain is our which-path detection? An electron entering
the QD-slit changes the transmission probability of the QPC-
detector by DTd. The rate at which particles probe the detector at
zero temperature is 2eVd/h, where Vd is the voltage across the
detector. Thus, the number of particles probing the detector
during the dwell time of the electron in the QD, td ¼ h=2p� (� is
the elastic width of the resonant state), is N ¼ td2eV d=h ¼
ð1=pÞeV d=�. Now, we let Nt be the number of transmitted particles
out of the total N particles probing the detector. This is a binomial
random variable (leading to ‘shot noise’ in the current), having an
expectation value hN t i ¼ NTd and a standard deviation
jðN tÞ ¼ NTdð1 ⇥ TdÞ (refs 16, 17). To determine the certitude
of the detection and thus the extent of dephasing, DTd has to be
compared with the resultant uncertainty in Td, given by
jðTdÞ ¼ Tdð1 ⇥ TdÞ=N . For a noisy detector, jðTdÞ q DTd: the
detector does not provide which-path information and one expects
distinct interference, namely vd ⇥ 1. Whereas for a quiet detector,
jðTdÞ p DTd: one can determine, even if ‘in principle’, the path the
electron takes, and consequently, the interference pattern is
expected to diminish.

A direct evaluation of the overlap vd in equation (3), for a
symmetric barrier in the QPC detector11, leads to vd ¼
1 ⇥ ð1=8Þ½DTd=jðTdÞÿ2 at zero temperature, namely:

vd ¼ 1 ⇥
1
p

eV d

�

ðDTdÞ2

8Tdð1 ⇥ TdÞ
ð4Þ

We measured the visibility of the Ahoronov–Bohm oscillations
when the QD-slit is tuned to a conduction peak (using the central

Figure 3 Measurements of visibility. a, The transmission probability of the QPC

detector, Td, as a function of the voltage applied to the right gate of the QPC-

detector, Vg. b, The visibility (v) of the Ahoronov–Bohm (AB) oscillations as a

function of Vg for two values of drain source voltage, Vd. The peak-to-valley value

of the AB oscillations is obtained using the following procedure. First, the non-

oscillatory component of the trace IC versus B is subtracted using a least-mean-

squared fit to a polynomial of degree 2. Second, numerical integration of the

remaining oscillatory component squared leads to the peak-to-valley value. Last,

the visibility is found by dividing by the average value of IC. Error bars indicate the

fluctuations in visibility due to fluctuations of device’s properties (instrumental

noise is negligibly small). c, The visibility of the AB conductance oscillations as a

function of Vd for a fixed Td ¼ 0:2. The behaviour is linear for eVd � kB⇥ with

saturation for low Vd.
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(for a review see ref. 10). Here � is the magnetic flux threaded
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slit is in a formof a quantumdot, QD (with area 0:4 ⇤ 0:4 �m2) with a quantumpoint

contact, QPC, on its right side serving as a which-path detector. The excitation
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the plane of the 2DEG are induced by negatively biased miniature metal gates

deposited on the surface of the heterostructure, thus depleting the electrons

underneath the gates. A special lithographic technique, involving a metallic air

bridge, is used to contact the central gate that depletes the area between the two

slits (this serves also as plunger gate of the QD).

Figure 2 Conduction characteristics of the which-path device. a, Aharonov–

Bohm oscillations of the collector current IC with a period DB ⇤ �0=A ⇤ 2:6mT.

The solid line is measured with QPC drain source voltage Vd ⇤ 0 (which-path

detector turned off), while the dotted line, with a reduced visibility, is measured

with Vd ⇤ 100 �eV. (a.u., arbituary units.) b, The conductance of the QD, gQD, and

the transmission of the QPC nearby, Td, as a function of the plunger gate voltage,

Vp. The inset shows schematically the coupled structures. c, The induced

average change in the transmission probability of the QPC detector, DTd, due to

adding an electron to the QD as a function of Td. DTd is calculated by averaging

over several coulomb-blockage peaks. The reduced value of DTd near Td ⇤ 0 and

Td ⇤ 1 is a consequence of approaching the conductance plateaus.

E. Buks, et al , Nature 391, 871 (1998)



Superposition principle

• Quantum mechanics is a strictly linear 
theory

• Schrodinger’s equation 

• the linear superposition of any two solutions 
is a solution 

 
H − i ∂

∂t
⎛
⎝
⎜

⎞
⎠
⎟ψ t( ) = 0

ψ = c1ψ 1 + c2ψ 2



continuous linear superposition

! r,t( ) = A k( )ei k"r#!t( )
k
$

In#general,#any#wave#can#be#expressed#as#a#linear#combina6on#
of#plane#waves#using#amplitude#func6on#A(k) 

The#integral#form:#

! r,t( ) = A k( )ei k"r#!t( )d 3k$$$
The#completeness#and#uniqueness#of#the#above#expression#
need#further#proof.#One#can#refer#to#Fourier's#theorem###




