
Symmetry



Symmetries and Unitary 
Transformations 

• Let F and F' be two inertial frames 

• Consider a system S prepared in arbitrary 
states lΨα>, 1Ψβ>,... to certain 
specifications by observables attached to F, 
and the states lΨ’α>, 1Ψ’β> of S satisfying 
precisely the same specifications by 
observabIes attached to F'. 



• On the assumption that these frames are 
equivalent, all the probabilities relating the 
states prepared in F must be equal to the 
corresponding relations in F': 

• the corresponding probability amplitudes are 
equal apart from a phase factor

Ψα Ψβ

2
= ′Ψα ′Ψβ

2

Ψα Ψβ = eiλ ′Ψα ′Ψβ



Spatial Translations 

• the unitary operator for a spatial 
translation a is 

• where a is a numerical 3-vector, and P is 
the total momentum operator for the 
system in question

 T a( ) = e− iP⋅a 

Pi ,Pj⎡⎣ ⎤⎦ = 0



• Let xn be the coordinate operator of particle 
n.

• If Iφ> is any state, then 

T † a( )xnT a( ) = xn + a

T a( ) ϕ = ϕ;a



• let F(xn) be any observable constructed 
from coordinates. Then 

• for an infinitesimal translation, 

T † a( )F xn( )T a( ) = F xn + a( )

 
F xn + a( ) = F xn( ) + i


ai Pi ,F xn( )⎡⎣ ⎤⎦

i
∑



• if a function of the coordinates is invariant 
under a translation along the i-th direction, 
it commutes with that component of the 
total momentum. 

• if the Hamiltonian is invariant under spatial 
translations, the total momentum 
commutes with the Hamiltonian and is 
therefore a constant of motion. 



Groups of translation op
• Take the translation through a followed by 

b: 

• the order in these translations does not 
matter; they commute. 

• The special case b = -a, 

• the operators T(a) form an Abelian Lie 
group of unitary operators standing in one-
to-one correspondence with the group of 
translation in the Euclidean 3-space E3. 

T b( )T a( ) = T a + b( )

T a( )T −a( ) = T a( )T † a( ) = 1



• A group (G) is a finite or infinite set of 
elements (gl, g2, . . .) having a composition law 
for every pair of elements such that glg2 is 
again an element of (G); which is associative, 
i.e., (glg2)g3 = gl(g2g3); and with every element 
gi having an inverse gi

-l such that gigi
-l is the 

identity element I, i.e.,                    for all i. 

• A group is Abelian if all its elements 
commute, i.e.,  

• A group with an infinite set of elements is a 
Lie group if its elements can be uniquely 
specified by a set of continuous parameters 
(zl . . . zr) 

g1g2 = g2g1

Igi = giI = gi



Representation
• matrices whose multiplication law stands in 

one-to-one correspondence with the 
algebra of the group. 

• if {|ξ>} is any basis in H, the matrices with 
elements               form a representation 
of this group 

ξ T a( ) ′′ξ ′′ξ T b( ) ′ξ
′′ξ
∑ = ξ T a + b( ) ′ξ

ξ T ′ξ



infinitesimal transformation 

• the generalization of the infinitesimal 
translation 

• if a unitary operator U(zl . . . zr) carries out 
a transformation belonging to a Lie group, 
then if the transformation is infinitesimal it 
has the form 

 
T = 1− i


δa ⋅P

 
U = 1− i δ zl ⋅Gl

l
∑



Generators
• the operators      , which must be Hermitian 

for U to be unitary, are called the generators 
of the group (G). 

• let f(xlx2x3) be any function of the 
coordinates in E3, taken now to be real 
numbers and not operators, and consider 
the infinitesimal translation 

 Gl

δ f = f xi +δai( )− f xi( ) = δai
∂ f
∂xii

∑
xi → xi +δai

 
δ f = i


δai

i
∂ f
∂xii

∑



Rotations 
• Parametrization: specify a rotation R by the 

unit vector n along an axis of rotation, and 
an angle of rotation (θ) about that axis

• infinitesimal rotation will be parametrized 
by  

• Under this rotation, a vector K in E3 
transforms as follows: 

δω = nδθ

K→ K +δK = K +δω × K

δKi = ε ijkδω jKk

εijk antisymmetric Levi-Civita tensor 



Matrix representation

• If K is written as a column 3-vector, 
rotations through any angle can be carried 
out with the help of the following 3 x 3 
matrices: 

• A finite rotation of K about a single axis,  
the axis 1 through the angle φl, is by 

I1 =
0 0 0
0 0 −i
0 i 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

I2 =
0 0 i
0 0 0
−i 0 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

I1 =
0 −i 0
i 0 0
0 0 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

K→ ′K = Ke− iφ1I1



non-Abelian group

• Successive rotations of K about distinct 
axes do not commute, a fact that is 
captured in the commutation rule 

• a unitary transformation D(R) on the 
Hilbert space S) of the system of interest. 

Ii , I j⎡⎣ ⎤⎦ = iε ijk Ik

D R2R1( ) = D R2( )D R1( )
D R2( )D R1( ) ≠ D R1( )D R2( )



angular momentum

• The general rotation can be expressed as

• n. J is the component of angular momentum 
along the direction n. 

D R( ) = exp −iθn ⋅ J( )



• considering two successive infinitesimal 
rotations about two distinct axes, say, 
through 

• The correspondence to the unitary 
operators D(R) must maintain this difference.  

δφ1,δφ2( )
 ′K = 1− iδφ2I2 +( ) 1− iδφ1I1 +( )K
 ′′K = 1− iδφ1I1 +( ) 1− iδφ2I2 +( )K

 ′′K − ′K = −δφ1δφ2 I1I2 − I2I1( ) +⎡⎣ ⎤⎦K  −iδφ1δφ2I3

 

D R1R2( )− D R2R1( ) = e− iδφ1J1e− iδφ2J2 − e− iδφ2J2e− iδφ1J1
 −δφ1δφ2 J1J2 − J2J1( )
= −iδφ1δφ2J3



commutation rule of
angular momentum

• in general, the angular momentum 
commutation rule. 

Ji , J j⎡⎣ ⎤⎦ = iε ijk Jk



• Let A be any observable. Under the 
rotation R it undergoes the unitary 
transformation 

A→ ′A = D† R( )AD R( )
A→ ′A = A +δA

δA = iδθ n ⋅ J,A[ ]



• If an observable is invariant under 
rotations about n, it commutes with the 
corresponding component of angular 
momentum.  

• An observable that is invariant under 
rotations about all directions is called a 
scalar under rotations. 

• If the Hamiltonian is invariant under 
rotations about an axis, the component of 
the total angular momentum along that 
axis is a constant of motion. 



vector operators

• a set of three observables (VI, V2, V3) = V is 
called a vector operator if it transforms 
under rotations in the same way as does 
the c-number vector K in 

• V must therefore obey the commutation 
rule

δV = iδθ n ⋅ J,V[ ] = δθn ×V

Vi , J j⎡⎣ ⎤⎦ = iε ijkV



finite rotations
• consider a rotation about anyone axis. 

Vi θ( ) = eiθJ3Vie− iθJ3

 

dVi θ( )
dθ

= V θ( ) = ieiθJ3 J3Vi −ViJ3( )e− iθJ3 = ieiθJ3 J3,Vi[ ]e− iθJ3

 

V1 θ( ) = ieiθJ3 J3,V1[ ]e− iθJ3 = eiθJ3V2e− iθJ3 = −V2 θ( )
V2 θ( ) = ieiθJ3 J3,V2[ ]e− iθJ3 =V1 θ( )
V3 θ( ) = 0

• After integration 
V1 θ( ) =V1 cosθ −V2 sinθ
V2 θ( ) =V1 sinθ +V2 cosθ



• The total momentum P of a system, being a 
vector, does not commute with the total 
angular momentum J;

• only components of P and J along the same 
direction commute. 

• The scalar product of two vector operators 
is invariant under rotation, and must 
commute with J. J2 and P2 both commute 
with J, 

Pi , Ji[ ] = 0

Pi , J j⎡⎣ ⎤⎦ = iε ijkPk

P2, Ji⎡⎣ ⎤⎦ = 0          J 2, Ji⎡⎣ ⎤⎦ = 0



• While all components of P and J are 
constants of motion if the Hamiltonian is 
invariant under translations and rotations, 
they cannot all be diagonalized 
simultaneously. Hence it is not possible to 
construct simultaneous eigenstates of all 
these 6 constants of motion. 

• In addition to the rotational scalars P2, J2 
and        , one component of angular 
momentum, traditionally defined to be J3, 
can be diagonalized simultaneously, and 
states can be designated by the associated 
eigenvalues. 

P ⋅ J



Dimensionless angular 
momentum

• Consider a single particle with position and 
momentum operators x and p. The 
(dimensionless) orbital angular momentum 
operator L for this particle is then defined 
as

• the order of xj and pk does not matter 
because only commuting factors appear 

 L = x × p( ) 

 Li = ε ijk x j pk 

x j , pk⎡⎣ ⎤⎦ = 0   if  j ≠ k



• The commutation rule for the orbital 
angular momentum  

 
Li ,Lj⎡⎣ ⎤⎦ =

1
2

ε ikl xk pl ,ε jmnxm pn⎡⎣ ⎤⎦ =
ε iklε jmn

2
xk pl , xm pn[ ]

 

xk pl , xm pn[ ] = xk , xm pn[ ] pl + xk pl , xm pn[ ]
= xm xk , pn[ ] pl + xk pl , xm[ ] pn
= i δ knxm pl −δ lmxk pn( )



 

Li ,Lj⎡⎣ ⎤⎦ =
i


ε iklε jmkxm pl − ε iklε jlnxk pn( )
= i


δ jlδ im −δ ijδ lm( )xm pl − δ inδ jk −δ ijδ kn( )xk pn⎡⎣ ⎤⎦

= i

xi pj − x j pi( )− i


δ ij xl pl − xk pk( )

= i

xi pj − x j pi( )

= iε ijkLk
ε iklε imn = δ kmδ nl −δ knδ lm



• From the canonical commutation rules 

 
xi ,Lj⎡⎣ ⎤⎦ =

1

xi ,ε jkl xk pl⎡⎣ ⎤⎦ =

ε jkl


xk xi , pl[ ] = iε jklδ il xk = iε ijk xk

 
pi ,Lj⎡⎣ ⎤⎦ =

1


pi ,ε jkl xk pl⎡⎣ ⎤⎦ =
ε jkl


pi , xk[ ] pl = −iε jklδ ik pl = iε ijl pl



Generator

• Let ψ(r) be some wave function, where r = 
(rl, r2, r3) is the eigenvalue of x. Under a 
infinitesimal rotation about n = (0,0,1), the 
change in ψ is 

 

δψ r( ) =ψ r1 − r2δθ ,r2 + r1δθ ,r3( )−ψ r1,r2,r3( )

= δθ −r2
∂ψ
∂r1

+ r1
∂ψ
∂r2

⎛
⎝⎜

⎞
⎠⎟

= iδθ


x1p2 − x2p1( )ψ
= iδθL3ψ




