Random sampling

Sampling with replacement

When sampling with replacement, you put back what you just drew.

 Imagine you have a bag with 5 red, 3 blue and 2 orange chips in it. What is the probability that the first chip you draw is blue?

$$Prob(1^{st} \text{ chip } B) = \frac{3}{5+3+2} = \frac{3}{10} = 0.3$$

 Suppose you did indeed pull a blue chip in the first draw. If drawing with replacement, what is the probability of drawing a blue chip in the second draw?

$$1^{st}$$
 draw: 5 • , 3 • , 2 • 2^{nd} draw: 5 • , 3 • , 2 •

$$Prob(2^{nd} \text{ chip } B|1^{st} \text{ chip } B) = \frac{3}{10} = 0.3$$

 Suppose you actually pulled an orange chip in the first draw. If drawing with replacement, what is the probability of drawing a blue chip in the second draw?

$$1^{st} \text{ draw: } 5 \bullet, 3 \bullet, 2 \bullet$$

$$2^{nd} \text{ draw: } 5 \bullet, 3 \bullet, 2 \bullet$$

$$Prob(2^{nd} \text{ chip } B|1^{st} \text{ chip } O) = \frac{3}{10} = 0.3$$

 When drawing with replacement, probability of the second chip being blue does not depend on the color of the first chip.

$$Prob(B \mid B) = Prob(B \mid O)$$

 In addition, this probability is equal to the probability of drawing a blue chip in the first draw.

$$Prob(B|B) = Prob(B)$$
 $\stackrel{\text{st}}{=}$ draw $\stackrel{\text{nd}}{=}$ draw $\stackrel{\text{independent}}{=}$

 When drawing with replacement, draws are independent.

Independent and identically distributed

- A sequence of random trials is independent and identically distributed (i.i.d.) if each trial has the same probability distribution as the others and all are mutually independent.
- Drawing by sampling with replaces is i.i.d.
- Preferred by most of the statistical and machine learning methods due to its simplicity.

Sampling without replacement

When drawing without replacement you do not put back what you just drew.

Suppose you pulled a blue chip in the first draw.
 If drawing without replacement, what is the probability of drawing a blue chip in the second draw?

$$1^{st}$$
 draw: $5 \bullet$, $3 \bullet$, $2 \bullet$
 2^{nd} draw: $5 \bullet$, $2 \bullet$, $2 \bullet$

$$Prob(2^{nd} \text{ chip } B|1^{st} \text{ chip } B) = \frac{2}{9} = 0.22$$

 If drawing without replacement, what is the probability of drawing two blue chips in a row?

$$1^{st}$$
 draw: 5 • , 3 • , 2 • 2^{nd} draw: 5 • , 2 • , 2 •

$$Prob(1^{st} \text{ chip } B) \cdot Prob(2^{nd} \text{ chip } B \mid 1^{st} \text{ chip } B) = 0.3 \times 0.22$$

= 0.066

 When drawing without replacement, the probability of the second chip being blue given the first was blue is not equal to the probability of drawing a blue chip in the first draw.

$$Prob(B \mid B) \neq Prob(B)$$

- When drawing without replacement, draws are not independent.
- This is especially important to take note of when the sample sizes are small. If we were dealing with, say, 10,000 chips in a (giant) bag, taking out one chip of any color would not have as big an impact on the probabilities in the second draw. $P(B(B) = \frac{2999}{9999} = 0.293 \frac{200}{200} = 0.399 + \frac{200}{200} = 0.293 \frac{200}{200} = 0.299 + \frac{2$
- So, drawing with replacement isn't much different from drawing without replacement when the population size is big enough.

Simple random sample

Sampling with/without replacement

t & 1.1.d. (when population size is large enough)

Stratified sample

Readings

• Chapter 2.3 of OpenIntro Statistics

Homework #2: blackjack (simplified)

規則: 玩家與莊家各抽領張牌比大小

- 1. with v.s. without replacement
- 2. 抽牌順序

四種情況各自模擬100次計算並比較勝率(輸出表格)

加分題: 顯示玩家與莊家抽到的牌組 (hint)