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many particle wavefunction

• many particle wavefunction

• normalization condition

• time evolution
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hamiltonian

• many-particle hamiltonian

• energy eigenvalue
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N-noninteracting particles  

• For non-interacting particles

• Hamiltonian is separable

 V x1, x2, x3,, xN( ) =V x1( ) +V x2( ) +V xN( )

H = H j
j
∑

H j =
pj
2

2m
+V xj( )



2-particle wavefunction

• wavefunctions are separable

• for 2-particles, the following are the 
solutions to the Schrodinger equations

• energy is additive

 Hψα 1,2,,N( ) = Eαψα 1,2,,N( )

ψ E 1,2( ) =ψα x1( )ψ β x2( )

E = Eα + Eβ

ψ E 1,2( ) =ψα x2( )ψ β x1( )



identical particles
• the particles are indistinguishable

• Probability density should be invariant 
under index interchange

• The possible choices of 2-particle wave 
functions are

ψα x1( )ψ β x2( )↔ψα x2( )ψ β x1( )

ψ E
* 1,2( )ψ E 1,2( ) =ψ E

* 2,1( )ψ E 2,1( )

ψ S =
1
2

ψα x1( )ψ β x2( ) +ψ β x1( )ψα x2( )⎡⎣ ⎤⎦

ψ A =
1
2

ψα x1( )ψ β x2( )−ψ β x1( )ψα x2( )⎡⎣ ⎤⎦



index exchange
• For symmetric wavefunction

• For anti-symmetric wavefunction

ψ S 1↔2⎯ →⎯⎯ 1
2

ψα x1( )ψ β x2( ) +ψ β x1( )ψα x2( )⎡⎣ ⎤⎦ =ψ S

ψ A 1↔2⎯ →⎯⎯ 1
2

ψα x2( )ψ β x1( )−ψ β x2( )ψα x1( )⎡⎣ ⎤⎦ = −ψ A

ψ S
*ψ S 1↔2⎯ →⎯⎯ψ S

*ψ S

ψ A
*ψ A 1↔2⎯ →⎯⎯ −1( )2ψ A

*ψ A



Pauli principle

• Fermions: systems consisting identical 
particles of half-odd-integral spin are 
described by anti-symmetric wave functions

• Bosons: systems consisting identical 
particles of integral spin are described by 
symmetric wave functions

• Anyons ψα x1( )ψ β x2( ) 1↔2⎯ →⎯⎯ eiθψ β x1( )ψα x2( )



Pauli principle

• Fermions: no more than one fermion can 
be in the same quantum state.

• Why? 

ψ A =
1
2

ψα x1( )ψα x2( )−ψα x1( )ψα x2( )⎡⎣ ⎤⎦ = 0



Slater determinant

• For many particles, we can express the 
answer using the determinant

 

ψ A 1,2,,N( ) = 1
N!

ψα x1( ) ψα x2( )  ψα xN( )
ψ β x1( ) ψ β x2( )
 

ψ ρ x1( ) ψ ρ xN( )

change position
change state



antisymmetrized wavefunction

• For Fermions, the 2-particle wavefunction 
has to be anti-symmetrized
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example: 2 particles in a infinite well

ψ A 1,2,3( ) = 1
3!

ψ 1,2,3( )−ψ 2,1,3( ) +ψ 2,3,1( )⎡⎣

−ψ 3,2,1( ) +ψ 3,1,2( )−ψ 1,3,2( )⎤⎦

• 3-particle case



the necessity for 
(anti-)symmertization

• When two particles are close.

• How close? calculate the overlapping 
probability

• If it is very small, we can treat them 
separably

ψ a
* x( )ψ b x( )dx∫

ψ S ,A x1, x2( ) = 1
2

ψ a x1( )ψ b x2( ) ±ψ a x2( )ψ b x1( )⎡⎣ ⎤⎦



Probability property
• Consider the probability for the particles 

are close x1~x2

ψ A =
1
2

ψα x1( )ψ β x2( )−ψ β x1( )ψα x2( )⎡⎣ ⎤⎦

~ 1
2

ψα x1( )ψ β x1( )−ψ β x1( )ψα x1( )⎡⎣ ⎤⎦

~ 0

ψ S =
1
2

ψα x1( )ψ β x2( ) +ψ β x1( )ψα x2( )⎡⎣ ⎤⎦

~ 1
2

ψα x1( )ψ β x1( ) +ψ β x1( )ψα x1( )⎡⎣ ⎤⎦

~ 2ψα x1( )ψ β x1( )



Comparison with the 
distinguishable case

• Distinguishable at same position

• Antisymmetric

• Symmetric  

ψ =ψα x1( )ψ β x1( ) ψ *ψ =ψα
* x1( )ψα x1( )ψ β

* x1( )ψ β x1( )

ψ S
*ψ S = 2ψ

*ψ

ψ A
*ψ A = 0

particles are more separated

particles are more closed to each other



spin wavefunction
• The spin states:

• singlet is anti-symmetric under interchange 

• triplet is symmetric under interchange
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Exchange force
• spatial wavefunction

• Combining spin part together

ψ S =
1
2

ψα x1( )ψ β x2( ) +ψ β x1( )ψα x2( )⎡⎣ ⎤⎦

ψ A =
1
2

ψα x1( )ψ β x2( )−ψ β x1( )ψα x2( )⎡⎣ ⎤⎦

spatial spin total

sym asym(singlet) asym

asym sym(triplet) asym



spatial-spin wavefunctions

• The probability density for x1~x2 is very 
small for spin triplet.

• The probability density for x1~x2 is slightly 
higher for spin singlet.



Coulomb interaction
• V for interparticle interaction is positive 

(same polarity)

• To reduce potential energy, separated 
particles are favored

• The spatial wavefunction is antisymmetric 
and the spin part is symmetric

• Called “exchange” interaction

repulsive force



Hartree theory

• To deal with the electron-electron 
interaction in a muliti-electron atom

• The effect is included in a local potential 
generated by all electrons

• The potential should obeys the properties

V r( ) = − Ze2

4πε0r
V r( ) = − e2

4πε0r

r→∞r→ 0



Procedures 1

• With the guessed/modified V(r), one 
numerically solve all eigenstates                    
and associated eigenenergies

• Use Pauli exclusive principle to assign total 
wavefunction without considering particle 
interactions(but not antisymmetrized)

• Electron charge distributions are obtained 
from

ψα ,ψ β ,ψγ

Eα ,Eβ ,Eγ

ψα
2 ,ψ β

2
,ψγ

2



Procedures 2

• With charge distribution, the potential 
satisfies

• Go back to step 1 with the modified V and 
recursively to obtain a converged V and 

∇2V = ρ
ε0

ρ = ρ0 − ene

ψα ,ψ β ,ψγ



Bose system
• Bosons obey symmetrized wave functions

• We may put them in the same state 

• The probability density

ψ S =
1
2

ψ β x1( )ψ β x2( ) +ψ β x1( )ψ β x2( )⎡⎣ ⎤⎦

= 2ψ β x1( )ψ β x2( )

α = β

ψ S =
1
2

ψα x1( )ψ β x2( ) +ψ β x1( )ψα x2( )⎡⎣ ⎤⎦

ψ S
∗ψ S = 2ψ β

* x1( )ψ β
* x2( )ψ β x1( )ψ β x2( )



Distinguishable case
• For distinguishable particles, the 

wavefunction is

• The probability density is

• Indistinguashability increases the probability

ψ =ψα x1( )ψ β x2( ) =ψ β x1( )ψ β x2( )

ψ *ψ =ψ β
* x1( )ψ β

* x2( )ψ β x1( )ψ β x2( )

ψ S
∗ψ S = 2ψ

*ψ



N-particle case
• Symmetrized N-particle wavefuncitons

• Probability density

• Enhancement in probability

 
ψ S =

1
N!

N!( )ψ β x1( )ψ β x2( )ψ β xN( )

 ψ S
*ψ S = N!( )ψ β

* x1( )ψ β
* x2( )ψ β

* xN( )ψ β x1( )ψ β x2( )ψ β xN( )

ψ S
*ψ S = N!( )ψ *ψ



Probability Enhancement

• For 1-particle

• For N-particle

• For N+1 particle

• The probability for more bosons joining 
together is enhanced 

P1 =ψ β
*ψ β

PN = N!P1
N = N! ψ β

*ψ β( )N

PN+1 = N +1( )!P1N+1 = N +1( )N!P1NP1
= N +1( )PNP1




