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orthnormal set

• quantum states in the configuration space  
are complex "wave" functions

• it can be specified uniquely in terms of a 
complete orthonormal set of functions.  

ϕ q( )

ua q( )

q = x, y, z( )

 a =1,2

basis index



completeness
• complete means that any φ can be 

expressed as a linear combination of the ua 

ϕ q( ) = caua q( )
a=1

∞

∑

ca = dq( )u∗
a q( )ϕ q( )∫



Orthonormal
• the orthonormal means

• the completeness relation for the set {ua }: 

dq( )u∗
a q( )u ′a q( )∫ = δ a ′a

u∗
a q( )ua ′q( )

a
∑ = δ 3 q − ′q( )

δ 3 q − ′q( ) = δ x − ′x( )δ y − ′y( )δ z − ′z( )

f ′x( ) = δ x − ′x( ) f x( )dx
−∞

∞

∫
Dirac function



Hilbert space

• The set of square integrable functions         
{ua (q)} constitute a basis in an infinite 
dimensional complex vector space, called a 
Hilbert space. 

• The functions ua(q) on the configuration 
space do not form a unique description of 
this particular basis. 



Momentum basis
• the Fourier transform of ua 

• To satisfy the boundary condition

• the set of functions {va (p)} in momentum 
space provides a "representation" of the 
same basis in H 

 
va p( ) = dqj

L
eipjq j ua q( )∫

j
∏

L
 

pj


=
2njπ
L

,      nj = 0,±1,±2



Plane wave basis
• the plane waves form a complete 

orthonormal basis 

 
φp1,p2 ,

q( ) = φp q( ) = 1
L

eipjq j 
j
∏

dq( )φ∗
p q( )φ ′p q( )∫ = δ pj ′pj

j
∏

φ∗
p q( )φp ′q( )

p
∑ = δ 3 q − ′q( )

orthonormal

completeness

va p( ) = dq( )φ∗
p q( )ua q( )∫ ua p( ) = φ∗

p p( )va p( )
p{ }
∑



Dirac’s notation

• In Dirac's nomenclature, the vectors in this 
space are called kets, and denoted by the 
symbol 

• By the definition of a complex vector space, 
the product          is a vector in the space 

• the sum is also a vector

α ξ

ζ =α ξ + β η

 
α,β,γ( ) are complex numbers



scalar product
• to associate a dual vector to every ket in a 

one-to-one manner, called a bra, denoted by 
the 

• scalar products are define between bras and 
kets.

•           of any ket is real, and by definition 
positive. 

ξ η = η ξ ∗

ξ ξ



scalar product

• The dual bra of

• the scalar product satisfies the linear 
relationship 

ζ =α∗ ξ + β∗ η

ω ζ =α ω ξ + β ω η

ζ =α ξ + β η



Schwartz inequality 

• similar in vector space

ξ η
2
≤ ξ ξ η η

 
ω

⋅ v

≤ωv



orthonormal basis

• a set of basis,          satisfies 

• any vector       can be expressed by linear 
combination 

k ′k = δ k ′k

ω = ck k
k
∑

= k
k
∑ k ω

ω

k{ }

ck = k ω



projection operator

• For 1d subspace spanned by single basis 
define  projection operator

• summation of all independent projection 
operators gives the entire Hilbert space

k

Pk ω = ck k
= k k ω

Pk = k k

1= k k
k
∑



product of projection 
operators

• one can define a projection to multi-
dimensional subspace that

PkP ′k = k k ′k ′k = δ k ′k k k = δ k ′k Pk

Pk
2 = Pk

 
PK = ki ki

i=1

n

∑

again  PK
2 = PK  PKP ′K = 0 if K and K’ do not have 

common basis



matrix element
• any operator A can be expressed in k-

representation

•                     is called matrix element

• for the product of operators 

A = ′k ′k
k ′k
∑ A k k = ′k A k ′k

k ′k
∑ k

′k A k

′k BA k = ′k B ′′k ′′k A k
′′k
∑



expectation value, trace 
and determinant

• the diagonal matrix element                       
is called the expectation value in

• Global properties of an operator are

k
k A k

Tr A = k A k
k
∑

detA = det ′k A k{ }



transpose and complex 
conjugate

• associate operator: transpose

• associate operator: complex conjugate

AT = ′k ′k
k ′k
∑ AT k k = k A ′k ′k

k ′k
∑ k

A* = ′k ′k
k ′k
∑ A* k k = ′k A k * ′k

k ′k
∑ k



Hermitian adjoint

• symmetric operator

• Hermitian adjoint

• Self-adjoint (Hermitian) operator

AT = A

A† = AT( )*

A† = A

AB( )† = B†A†



commutator

• Product of two Hermitian operators is 
Hermitian when they commute

A,B[ ] = AB − BA

A,B[ ]† = AB( )† − BA( )† = B†A† − A†B† = − A,B[ ]

• The commutator of two Hermitian operators 
is anti-Hermitian

• The anti-commutator of two Hermitian 
operators is Hermitian

A,B{ } = AB + BA

A,B{ }† = AB( )† + BA( )† = B†A† + A†B† = A,B{ }

A,B[ ] = 0



decomposition
• any operator can be decomposed into 

Hermitian and anti-Hermitian parts 

A1 =
1
2
A + A†( )

A2 =
1
2
A − A†( )

• the products         and        are positive 
operators, namely the expectation values are 
real and positive

AA† A†A

AA† − A†A = A1 + A2( ), A1 − A2( )⎡⎣ ⎤⎦ = 2 A2,A1[ ]



unitary transformation

• An operator is unitary if

• in terms of k-basis

UU † =U †U = 1

k U ′′k ′′k U † ′k
′′k
∑ = δ k ′k

= k U ′′k ′k U ′′k *

′′k
∑



basis transformation

• consider a different orthonormal basis of the 
same Hilbert space

• they can be expressed by the basis 

r

k

r = k r k
k
∑

k r is transformation function

they are elements in a unitary matrix

r k k ′r
k
∑ = δ r ′r



unitary transformation
• unitary transformation of an operator is 

defined by 

• We know that

U †AU

Tr AB = Tr BA
det AB( ) = det A( )det B( )

Tr U †AU( ) = Tr U †UA( ) = Tr A( )
det U †AU( ) = det U †UA( ) = det A( )

det U †U( ) = detU 2 = 1

the trace and determinant of any operator are 
invariant under unitary transformations, 
or under a change of basis. 



Hermitian and unitary
• the common relation between Hermitian 

and unitary operators in QM is

U = eiQ =
iQ( )n
n!n

∑
U † = e− iQ

perturbation theory 

continuous symmetries 

U = 1+ iK
1− iK

another form



q basis vs. p basis

• the product of plane waves is the unitary  
transformation from the q to the p basis: 

 
φp q( ) = 1

L
eipq  = q p

va p( ) = dq( )φ∗
p q( )ua q( )∫

p = q p
q
∑ q

discrete form



discrete vs. continuous

• denumerable basis

discrete lattice 

spatial continuum  

discrete momentum basis
continuum when  L→∞

 
φp q( ) = eipq 

2π 
φp q( ) = 1

L
eipq 



continuous limit

dqφ∗
p q( )φ ′p q( )∫ = δ p − ′p( )

dpφ∗
p q( )φp ′q( )∫ = δ q − ′q( )

 
q p

∞
=ϕ p q( ) = 1

2π
eipq 

 
φp q( ) = eipq 

2π



eigenvalues
• Any single Hermitian operator A can be 

diagonalized by a unitary transformation.

• The elements of this diagonalized form are 
real and are called the eigenvalues 

• The eigenvalues are the roots of the secular 
equation   det A − aI( ) = 0



eigenvectors

• The basis vectors that diagonalize A are 
called its eigenvectors or eigenkets

• Eigenvectors with different eigenvalues are 
orthogonal. 

A n = an n

A = an n n
n
∑spectral decomposition 



commutator

• If Ai, where i = 1,. .., K, is a set of K 
commuting Hermitian operators, these 
operators can be diagonalized simultaneously 

Ai n = a i( )
n an



• If a pair of Hermitian matrices do not 
commute, they cannot be diagonalized 
simultaneously.

• If      is an eigenket of A with eigenvalue a, 
and B is any operator (in general, not 
Hermitian) such that 

A,B[ ] = λB then 

B a = const a + λ

a



States and Probabilities 

• the statistical character of quantum 
mechanics is irreducible - that there are no 
underlying "hidden variables" which behave 
in a deterministic manner, and that this 
statistical character is not an expression of 
ignorance about such hidden substructure.  



quantum states

φ

When S can be described by one vector, it is 
in a pure state. Should no single 
ket suffice, S is in a mixed state, or mixture. 

• 1. The most complete possible description of 
the state of any physical system S at any 
instant is provided by some particular     
vector      in the Hilbert space  appropriate to 
the system. Every linear combination of such 
state vectors represents a possible physical 
state of S. 



observables

• 2. The physically meaningful entities of 
classical mechanics, such as momentum, 
energy, position and the like, are represented 
by Hermitian operators. 

A = a a a
a
∑

 (a, a', . . .) are the real eigenvalues of A



probability

• 3. A set of N identically prepared replicas of 
a system S described by the pure state        , 
when subjected to a measurement designed 
to display the physical quantity represented 
by the observable A, will in each individual 
case display one of the values (a, a', . . .), and 
as             will do so with the probabilities 
Pφ(a), P'φ (a'), . .. , where 

φ

N→∞

pφ a( ) = a φ 2



sum rule and 
mean value

• sum rule

• mean value of A

pφ a( ) ≥ 0 pφ a( )
a
∑ = 1

A φ = apφ a( )
a
∑

φ A φ = a a φ 2

a
∑



projection operator

• Pa is the projection operator

pφ a( ) = a φ 2 = φ Pa φ

Pa = a a

in general the probability that a system S in 
the state        will be found to be in the 
arbitrary state        is 

pφ ψ( ) = ψ φ
2

ψ
φ



Hidden variables?

Values cannot be ascribed to observables prior to 
measurement; such values are only the outcomes of 
measurement. 

The common-sense inference that measurements 
reveal pre-existing values leads to implications that 
are contradicted by experiment, experiment, and 
are also incompatible with the Hilbert space 
structure of quantum mechanics. 



measurement outcomes 
example: polarization of a photon

photon state φ

circular polarization measurement
M circ

linear polarization measurement

M lin

kR kL

k1 k2

probabilities 

kR,L φ
2

k1,2 φ
2



compatible observables

• compatible observables: observables that all 
commute with each other

• If A and B commute, there exist 
simultaneous eigenkets            of A and B 
with eigenvalues (a, a ' ,...; b, b ' ,.. .). 

ab{ }



compatible observables

• the action of f(A, B) on the simultaneous 
eigenkets is then 

• the expectation value

• the joint probability

f A,B( ) ab = f a,b( ) ab

φ f A,B( ) φ = f a,b( ) ab φ
ab
∑

pφ ab( ) = ab φ 2



Conditional probability
• the probability for the occurrence of b given 

that a has definitely occurred.  

pφ a | b( ) = pφ ab( )
pφ a( )

some identities 

pφ a | b( )
b
∑ = 1 pφ ab( )

b
∑ = pφ a( )

example: 2(or N)-particle wavefunction 



incompatible 
observables

• P and Q do not commute, simultaneous 
eigenkets of P and Q do not exist.  

• the probability distribution

• not possible to define a joint distribution 

P p = p p Q q = q q

pφ p( ) = p φ 2 pφ q( ) = q φ 2



• first calculate the probability displaying 
eigenvalue p

• then calculate the probability displaying 
eigenvalue q

• sum over all possible p, we have

• one can compare it to  

pφ p( ) = p φ 2

pp q( ) = q p 2

pp q( ) pφ p( )
p
∑ = q p 2 p φ 2

p
∑

pφ q( ) = q φ 2



physical interpretation
• first perform the measurement of P                        

as a consequence of which these individuals 
are known to be in the state 

• then perform the measurement of Q

• The sum on p only results a recoverable loss 
of knowledge.

MP

MQ

p

q p 2 p φ 2

p
∑ → q p p φ

p
∑

2



Mixtures 
• example : a collection of atoms in 

thermodynamic equilibrium.

• Hamiltonian H with energy eigenvalues {E}. 
There will be other observables compatible 
with H, designated collectively by A, that 
together specify a basis 

• At temperature T these states are populated 
in accordance with the Boltzmann 
probability distribution, pT E( ) = e−E kT Z

Z = exp −E kT( )
E ,a
∑partition function

Ea



expectation value 

• The expectation value of some observable 
Q, which need not be compatible with the 
the Hamiltonian, 

Q T = pT E( ) Ea Q Ea
E ,a
∑

Q T = qpT E( ) q Ea 2

q
∑

E ,a
∑

statistical distribution of 
eigenvalues of Q in the 
pure states , 

the probability that such a 
pure state occurs in the 
thermal ensemble Ea



density matrix
• It is an operator

• The density matrix describing a thermal 
equilibrium ensemble is define as a sum of 
projection operators onto the basis  
weighted by the Boltzmann distribution.  

• the trace of density matrix is 1

• With the density matrix, the expectation 
value of Q can be written as

ρT = pT E( ) Ea Ea
E ,a
∑ = pT E( )P Ea( )

E ,a
∑

Ea

Tr ρT = pT E( )
E ,a
∑ = 1

Q T = Tr ρTQ( )



Pure state
• Let      be some pure state, the density 

matrix is simply a projection operator

• the density matrix of a pure state is 
characterized by 

ρψ = ψ ψ = Pψ

ψ

Q ψ = ψ ′q ′q Q q
q, ′q
∑ qψ

= qψ ψ ′q ′q Q q
q, ′q
∑

= q Pψ ′q ′q Q q
q, ′q
∑ = Tr PψQ( )

ρψ
2 = ρψ Tr ρψ

2( ) = 1



• the square of the thermal density matrix 

• the trace 

ρT
2 = pT E( )⎡⎣ ⎤⎦

2 P Ea( )
E ,a
∑ P2 Ea( ) = P Ea( )

Tr ρT
2( ) = pT E( )⎡⎣ ⎤⎦

2

E ,a
∑ ≤1

Tr ρT
2( ) = 1 only T=0, a pure state of ground state

A state is pure if its density matrix P is a projection 
operator, and it is a mixture if it is not. The two 
cases are characterized by the invariant condition

with the equality only holding if the state is pure.  

Tr ρT
2( ) ≤1



• density matrix can be written in any basis, as an 
observable whose eigenvalues (pl,p2,...) satisfy 

• Let      be the orthonormal basis that diagonalizes 
p, so that 

• the expectation value of an observable Q in a 
state p, whether pure or mixed, can be written 

• the probability of a finding a state     in a mixture

0 ≤ pi ≤1 pi
i
∑ = 1

ρ = ai pi ai
i
∑

Q = Tr ρQ( )

pφ ρ( ) = Tr ρPφ( ) = pi ai φ
2

i
∑

ai

φ



von Neumann entropy 

• most important measure of the departure 
from purity 

• When p is the Boltzmann distribution, S is 
the entropy of statistical thermodynamics 

• For a pure state, where only one pi = 1 and 
the others vanish, S = O. 

S = −kTr ρ lnρ( ) k is Boltzmann's constant. 

S = −k pi ln pi
i
∑



maximal entropy
• The entropy has a maximal value

• if the Hilbert space has a finite dimension d 

• The entropy satisfies the inequalities 

δ pi ln pi + λ( ) = 0
i
∑ λ Lagrange multiplier 

for constraint pi
i
∑ = 1

δ pi ln pi + λ( ) =
i
∑ ln pi + λ( )δ pi + piδ ln pi

i
∑

= ln pi +1+ λ( )δ pi
i
∑

ln pi +1+ λ = 0 or  pi are equal

pi = 1 d

0 ≤ S ≤ −k lnd



• the density matrix that maximizes S is 

• The sum in is just the unit operator. the 
mixture in which the entropy is maximal is 
the one in which all states, in any basis, are 
populated with equal probability.  

ρmax =
1
d

ai ai
i
∑

ρmax =
1
d



• The unknown density matrix (whether pure 
or mixed) is a d-dimensional Hermitian 
matrix of unit trace is specified by d2-1 real 
parameters. 

• We need d2-1 measurement to identify the 
density matrix

ρ = ai rij a j
ij
∑ rji = rij

*

Xij =
1
2

ai aj + aj ai( )
Yij =

i
2

ai aj − aj ai( )
Tr ρXij( ) = Rerij Tr ρYij( ) = Im rij



composite system

• mixtures do not only arise when pure states 
are "mixed" by the environment.

• If a composite system is in a pure state, its 
subsystems are in general in mixed states. 

• consider a system composed of two 
subsystems with coordinates ql and q2.     
Let      be an arbitrary pure state of the 
system, with wave function           , so that 

Ψ

′q1 ′q2 ρ q1q2 = Ψ q1q2( )Ψ* ′q1 ′q2( )

Ψ q1q2( )



• Let Al be an observable of the subsystem 1; 

• the expectation value of Al in Ψ is 

• reduced density matrix 

′q1 ′q2 A1 q1q2 = ′q1 A1 q1 δ q2 − ′q2( )

A Ψ = Ψ A1 Ψ

= dq1 d ′q1 dq2 d ′q2 ′q1 A1 q1 Ψ q1q2( )Ψ* ′q1 ′q2( )δ q2 − ′q2( )∫
= dq1 d ′q1 dq2 ′q1 A1 q1 Ψ q1q2( )Ψ* ′q1q2( )∫

′q1 ρ1 q1 = dq2 ′q1q2 ρ q1q2∫

A Ψ = dq1 d ′q1 ′q1 A1 q1∫ q1 ρ1 ′q1

= Tr ρ1A1( )



entangled state
• entangled state is a pure state 

• a state cannot be written as a simple 
product 

Ψ = c1u1 q1( )v1 q2( ) + c2u2 q1( )v2 q2( ) c1
2 + c2

2 = 1

{u} and {v} are orthonormal, 

dq1ui
* q1( )uj q1( )∫ = δ ij dq2vi

* q2( )vj q2( )∫ = δ ij

Ψ =ϕ q1( )χ q2( )



• the reduced density matrix of Ψ is

• ρI does not describe a pure state of 
subsystem 1 

• Thus ρI is not pure, and cannot be 
represented by any single state in the 
Hilbert space of system 

′q1 ρ1 q1 = dq2Ψ
* ′q1q2( )Ψ q1q2( )∫

= c1
2 u*1 ′q1( )u1 q1( ) + c2 2 u*2 ′q1( )u2 q1( )

′q1 ρ
2
1 q1 = c1

4 u*1 ′q1( )u1 q1( ) + c2 4 u*2 ′q1( )u2 q1( )

Tr ρ1
2( ) = c1

4 + c2
4 <1



• the subsystem can only be pure if the 
density matrix of the whole system is of the 
form:

ρs ⊗ ρR

pure subsystem Remainder



• The two-body probability distribution 
associated with the entangled state

• the interference term describes correlations 
even though the particles do not interact 
and are far apart

p q1q2( ) = c1u1 q1( )v1 q2( ) + c2u2 q1( )v2 q2( ) 2

= c1
2 u1 q1( ) 2 v1 q2( ) 2 + c2 2 u2 q1( ) 2 v2 q2( ) 2 + I2

I2 = 2Re c1c
*
2u1 q1( )u*2 q1( )v1 q2( )v*2 q2( )⎡⎣ ⎤⎦

the interference term



2-particle interferometer
• An experimental setup allows two particles 

to traverse different paths

• It is possible to determine the path taken by 
one particle by some observation on the 
other.



coincidence probability 
vs. 1-particle probability

• neither particle will display an interference 
pattern (in Pa , Pb)

• there may be an interference pattern in the 
a-b coincidence rate Pab, in the correlation of 
positions for a and b. 

Pab = Ψ qa ,qb ,t( )

Pa qa ,t( ) = dqbPab qa ,qb ,t( )∫



2-photon interference 
experiment

• L. Mandel, Rev. Mod. Phys. 71, S274 (1999). 



• consider a pure entangled state for a two-
body system 

• The probability distribution associated with 
Φ has the two-body interference term 

• the probability distribution for a is that of a 
mixture, with the one-body interference 
term 

Φ = N ϕ1 q1( )χ1 q2( ) +ϕ2 q1( )χ2 q2( )⎡⎣ ⎤⎦

I2 = 2N Re ϕ1 q1( )ϕ *
2 q1( )χ1 q2( )χ *

2 q2( )⎡⎣ ⎤⎦

I1 = 2N
2 Re ϕ1 q1( )ϕ *

2 q1( )χ1 q2( )χ *
2 q2( )⎡⎣ ⎤⎦dq2∫

= 2N 2 Re Vϕ1 q1( )ϕ *
2 q1( )⎡⎣ ⎤⎦



• a by itself will only show an interference 
pattern if the states χl,2 of the other body b 
are not orthogonal. 

• the physical side, that the states of b do not 
unambiguously determine the path of a. 

The visibility 1V12 of the interference pattern 
displayed by a is a measure of the confidence 
with which an observation on b determines 
the state of a. 


