
Equation of motion 



Canonical Commutation Rules 

• Hermitian coordinate and momentum 
operators are postulated to obey the 
following canonical commutation rules

• Because all the q's commute, they can be 
diagonalized simultaneously; the same goes 
for the p's.   

 
qi , pj⎡⎣ ⎤⎦ = iδ ij

qi ,qj⎡⎣ ⎤⎦ = pi , pj⎡⎣ ⎤⎦ = 0

 

′q1, ′q2, ′q3N = ′q1 ⊗ ′q2 ⊗ ′q3N
′p1, ′p2, ′p3N = ′p1 ⊗ ′p2 ⊗ ′p3N



generalization of commutation 
rules 

• to examine one degree of freedom

• a generalization gives

 q, p[ ] = i

 q, p
n⎡⎣ ⎤⎦ = inp

n−1

 p,q
n⎡⎣ ⎤⎦ = −inqn−1

 
q,G p( )⎡⎣ ⎤⎦ = i

∂G
∂p  

p,F q( )⎡⎣ ⎤⎦ = −i ∂F
∂q



spatial translation

• unitary operator 

• a is any real number having the dimension of 
length. T(a) is unitary 

 T a( ) = e−
iap


 
q,T a( )⎡⎣ ⎤⎦ = i

∂
∂p

= i −ia

T a( ) = aT a( )

qT a( ) = T a( ) q + a( )

qT a( ) ′q = T a( ) q + a( ) ′q = ′q + a( )T a( ) ′q



•              is an eigenket of q with eigenvalue 
of (q+a)  

• because T is unitary, it preserves norms 

• the unitary transformation of the 
coordinate operator corresponding to a 
spatial translation. 

qT a( ) = T a( ) q + a( )

T † a( )qT a( ) = q + a

T a( ) ′q

T a( ) ′q = ′q + a



translation in momentum space 

• the unitary operator 

• Translations in momentum space are often 
referred to as boosts. 

 K k( ) = e
iqk


K † k( ) pK k( ) = p + k

K k( ) ′p = ′p + k



time-energy commutator 

• put time on the same footing as the spatial 
coordinates by generalizing the 
commutation rule to one between           
4-vectors for position and momentum. 

• if t is to have a continuous spectrum like 
the coordinates, then so must H; i.e., there 
could be no lower bound to energies and 
no bound states with discrete energies! 

 t,H[ ] = −i



Schrodinger Wave Functions 
• Schrodinger wave function is the scalar 

product 

• transformation function between the 
coordinate and momentum 

 ′q1ψ

 

′q ′p = ′q = 0 T † ′q( ) ′p = e
i ′p ′q
 ′q = 0 ′p

= e
i ′p ′q
 ′q = 0 K ′p( ) ′p = 0

= e
i ′p ′q
 ′q = 0 ′p = 0



• The constant is determined by requiring

• the Fourier representation of the delta 
function: 

′q ′′q = d ′p∫ ′q ′p ′p ′′q = δ ′q − ′′q( )

 
= d ′p∫ e

i ′p ′q − ′′q( )
 ′q = 0 ′p = 0 2

 
δ ′q( ) = d ′p

2π
e
i ′p ′q
∫

 ′q = 0 ′p = 0 2 = 2π( )−1

 
′q ′p = 1

2π
e
i ′p ′q




momentum space wave 
functions 

• Configuration and wave functions

• momentum space wave functions

ϕ ′q( ) = ′q ψ

 

φ ′p( ) = ′p ψ

= d ′q∫ ′p ′q ′q ψ

= d ′q
2π∫ e

− i ′p ′q
 ′q ψ = d ′q

2π∫ e
− i ′p ′q
 ϕ ′q( )

 
ϕ ′q( ) = d ′p

2π∫ e
i ′p ′q
 φ ′p( )



The density matrix 

• to compute the momentum distribution  
one must know the off- diagonal elements 
of p in the coordinate representation. 

• the probability distribution for a complete 
set of compatible observables does not 
determine the probability distribution for 
an incompatible observable. 

′q ρ ′′q =ϕ∗ ′q( )ϕ ′′q( ) ′p ρ ′′p = φ∗ ′p( )φ ′′p( )

 

′p ρ ′′p = d ′q d ′′q ′p ′q ′q ρ ′′q∫ ′′q ′′p

= d ′q d ′′q
2π

e
− i ′p ′q
 e

i ′′p ′′q
 ′q ρ ′′q∫



action of the momentum 
operator 

• action of the momentum operator on 
configuration space wave functions 

• n-th derivative of a delta function: 
 

′q pn ′′q = d ′p∫ ′q ′p ′p( )n ′p ′′q

= d ′p
2π∫ ′p( )n e

i ′p ′q − ′′q( )


δ x( ) = dk∫ eikx dnδ x( )
dx

= δ n( ) x( ) = dk∫ ik( )n eikx

δ n( ) x − ′x( ) f ′x( )d ′x∫ =
dn f x( )
dxn



′q ′′q = δ ′q − ′′q( )

 

′q pn ′′q = d ′p
2π∫ ′p( )n e

i ′p ′q − ′′q( )


= 
i

⎛
⎝⎜

⎞
⎠⎟
n

δ n( ) ′q − ′′q( )

 

′q pn ψ = d ′′q ′q pn ′′q ′′q ψ∫
= 

i
⎛
⎝⎜

⎞
⎠⎟
n

d ′′q δ n( ) ′q − ′′q( )ϕ ′′q( )∫

= 
i

⎛
⎝⎜

⎞
⎠⎟
n dnϕ ′q( )

d ′q n = 
i

∂
∂ ′q

⎛
⎝⎜

⎞
⎠⎟

n

ϕ ′q( )

 
′p qn ψ = i ∂

∂ ′p
⎛
⎝⎜

⎞
⎠⎟

n

φ ′p( )Also



in higher degree freedoms
• The displacement by the 3-vector a is to be 

produced by a unitary operator T(a) that 

 

T a( ) = e
− ipn ⋅a


n=1

N

∏

= exp − ipn ⋅a
n

∑⎛⎝⎜
⎞
⎠⎟

= e
− iP⋅a


T † a( )xnT a( ) = xn + a n: particle index

P = pn
n
∑total momentum 



uncertainty
• a precise definition of the uncertainty is the 

root-mean- square dispersion 

• the second moment of the probability 
distribution 

ΔA = A − A = A2 − A 2

ΔA = a2 − A( ) a φ 2

a
∑



uncertainty relation

• Let B be an observable that does not 
commute with A. 

• Schwartz inequality

A = A − A

B = B − B

A φ = φA

B φ = φB

ΔAΔB( )2 = A2 B2 = φA φA φB φB

ΔAΔB( )2 = A2 B2 ≥ AB
2



• Decompose 

• Because C and           are Hermitians, the 
average value of C and          are real

AB = 1
2
A,B⎡⎣ ⎤⎦ +

1
2
A,B{ }

= 1
2
A,B[ ]+ 12 A,B{ } A,B[ ] = iC

AB 2
= 1
4

A,B{ } + i C
2
= 1
4

A,B{ } 2
+ C 2⎡

⎣⎢
⎤
⎦⎥

A,B{ }
A,B{ }



• the general form of Heisenberg's 
uncertainty relation. 

• For the canonical variables 

• remark:

ΔAΔB ≥ 1
2

A,B[ ]

 
ΔpiΔqj ≥

1
2
δ ij

A,B{ } = 0
φA ∝ φBif

A2 B2 = AB
2



The Schrodinger Picture 

• The basic assumption will be that time 
evolution is represented by a unitary 
transformation parametrized by a 
continuous parameter t 

• if Iφ;0> is some state of a system at t = 0, 
then at a later time Iφ; t> = Ltlφ; 0>, 
where Lt is a linear operator.  



• For some time-independent observable, A, 
its expectation value as a function of time

• the probabilities for the various eigenvalues 
will change with time, but by hypothesis, 
not the eigenvalues themselves.  

φ;t A φ;t = a a φ;t 2

a
∑

φ;0 Lt
†ALt φ;0 = at at φ;0

2

at
∑

Here at are the eigenvalues of Lt
†ALt

at are the eigenvectors of 



• any unitary transformation of a Hermitian 
operator leave its spectrum invariant. Lt is a 
unitary operator.  

• The unitary operators must only depend on 
time differences 

• and satisfy the following composition law: 

U t1( )U t2( ) =U t1 + t2( )

φ;t =U t − ′t( ) φ; ′t

U t( ) = U t N( )⎡⎣ ⎤⎦
N



infinitesimal time
• When 

• The possible unitary matrix 

•         must be an infinitesimal Hermitian 
operator to first order (but why?) 

• The composition law implies that  Δ is 
linear in t

U δ t( )→1δ t→ 0

U δ t( ) = 1+ iΔ δ t( )

Δ δ t( )

Δ δ t1( ) + Δ δ t2( ) = Δ δ t1 +δ t2( )
Δ δ t( )∝δ t



• The result can be expressed as

• The operator H has the dimension of 
energy. it is Hamiltonian of the system in 
question.   

• For finite time differences, 

 
U δ t( ) = 1− i


δ tH

 

U t( ) = U t N( )⎡⎣ ⎤⎦
N
= lim

N→∞
1− i

Ht
N

⎛
⎝⎜

⎞
⎠⎟
N

= exp − i

Ht⎛

⎝⎜
⎞
⎠⎟



• the time derivative of U is

• The solution for initial condition that

 
U δ t + t( )−U t( ) = U δ t( )−1⎡⎣ ⎤⎦U t( ) = 1− i


δ tH⎛

⎝⎜
⎞
⎠⎟U t( )

 

∂U
∂t

=
U δ t + t( )−U t( )

δ t
= − i

HU t( )

 
U t( ) = exp − i


Ht⎛

⎝⎜
⎞
⎠⎟

U 0( ) = 1



Schrodinger equation

• The Schrodinger equation

• a ket           energy eigenstates satisfies time 
independent Schrodinger eq. 

• stationary states because they do not change 
in time aside from a phase factor. 

φ;t =U t − ′t( ) φ; ′t

 
i ∂
∂t

φ;t = i ∂
∂t
U t( ) φ;0 = HU t( ) φ;0 = H φ;t

H − E( )ψ E;t = 0

 ψ E;t = e
− i

Et
ψ E;0

ψ E;t



• the matrix elements of any time-independent 
observable A between stationary states also 
have a time dependence that is merely a 
phase:

• for any operator 

 ψ E;t Aψ ′E ;t = e
i

E− ′E( )t

ψ E;0 Aψ ′E ;0

ψ E A,H[ ]ψ E = 0



the coordinate representation

• N-particle hamiltonian

• denote a coordinate eigenket 

• Schrodinger equation in the coordinate 
representation: 

 
H = pn

2

2mnn
∑ +V x1, x2, xN( )

 r1,r2,rN

 
r1,r2,rN pn φ;t = 

i
∂
∂xn

φ r1,r2,rN ;t( )

 
i ∂
∂t

φ;t = H φ;t

 

i ∂
∂t
φ t( ) = 1

2mn


i

∂
∂xn

⎛
⎝⎜

⎞
⎠⎟

2

n
∑ +V
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
φ t( )



• the scalar product of any two solutions of 
the time-dependent Schrodinger equation 
is independent of time. 



Probability distribution

• the coordinate space probability 
distribution, 

• constancy of the norm 

 w r1,r2,rN ;t( ) = φ r1,r2,rN ;t( ) 2

 

∂
∂t

d 3r1d
3r2d 3rNw r1,r2,rN ;t( )∫ = 0



continuity equation

• in any infinitesimal region of configuration 
space, 

• probability flow

 

∂
∂t
w r1,r2,rN ;t( ) + ∂

∂rn
⋅ in r1,r2,rN ;t( )

n
∑ = 0

 
in r1,r2,rN ;t( ) = 

2mni
φ* ∂φ

∂rn
−φ ∂φ*

∂rn

⎛
⎝⎜

⎞
⎠⎟



Derivation

• potential V is diagonal in the coordinate 
representation

 
i ∂
∂t

φ;t = H φ;t
 
−i ∂

∂t
φ;t = φ;t H

 
i ∂
∂t

φ r( ) 2 = i ∂
∂t

φ;t r 2 = φ;t r r H φ;t − φ;t H r r φ;t

φ;t r r V φ;t − φ;t V r r φ;t = 0



Derivation

• Kinetic energy part 

 

φ;t r r K φ;t − φ;t K r r φ;t

= − 
2

2m
φ* r( ) ∂

2

∂r2
φ r( )−φ r( ) ∂

2

∂r2
φ* r( )⎡

⎣
⎢

⎤

⎦
⎥

= − 
2

2m
∂
∂r

⋅ φ* r( ) ∂φ r( )
∂r

−φ r( ) ∂φ
* r( )
∂r

⎛
⎝⎜

⎞
⎠⎟



charged particles

• charge density

• current density
 
ρ r,t( ) = en d 3r1d

3r2d 3rNδ r − rn( )w r1,r2,rN ;t( )∫
n
∑

 
j r,t( ) = en d 3r1d

3r2d 3rNδ r − rn( )in r1,r2,rN ;t( )∫
n
∑



Density matrix
• Let {Ia>} be a basis that diagonalizes the 

density matrix

• At time t

• The equation of motion for the density 
matrix 

ρ 0( ) = a pa a
a
∑

 a → exp −iHt ( ) a

 ρ t( ) = e− iHt ρ 0( )eiHt 

 

i d
dt

ρ t( ) = i d
dt

e− iHt ρ 0( )eiHt ⎡⎣ ⎤⎦

= He− iHt ρ 0( )eiHt  − e− iHt ρ 0( )eiHt H
= H ,ρ t( )⎡⎣ ⎤⎦



time-dependent hamiltonian
• unitary time evolution operator U(t,t’) 

depends on both of its arguments

• infinitesimal time transformations 

• F should be proportional to δ

U t +δ1 +δ 2,t +δ1( )U t +δ1,t( ) =U t +δ1 +δ 2,t( )
U t +δ1,t( ) = 1+ iF t,δ( )

F t,δ1( ) + F t,δ 2( ) = F t,δ1 +δ 2( )  F t,δ t( ) = H t( )δ t 

 U t +δ t, ′t( ) =U t +δ t,t( )U t, ′t( ) =U t, ′t( )− iH t( )δ tU t, ′t( ) 

 
i ∂
∂t
U t, ′t( ) = H t( )U t, ′t( )



Heisenberg picture

• The Heisenberg picture is better suited to 
bringing out fundamental features, such as 
symmetries and conservation laws, and it is 
indispensable in systems with many degrees 
of freedom,

• The matrix elements of a time-independent 
observable A in the moving basis are 

 ψ b;t Aψ ′b ;t = ψ b;0 e
iHt Ae− iHt  ψ ′b ;0



• In the Heisenberg picture, kets that describe 
the time evolution of pure states are fixed 
in the Hilbert space, and observables A that 
are time-independent in the Schrodinger 
picture are replaced by operators A(t) that 
evolve with the unitary transformation

• equation of motion 
 A t( ) = eiHt Ae−iHt 

 
i d
dt
A t( ) = A t( ),H⎡⎣ ⎤⎦



• Observables that commute with the 
Hamiltonian are constants of motion.

• Anyone constant of motion can be diagonalized 
simultaneously with the Hamiltonian, i.e, they 
possess simultaneous eigenstates. The 
Hamiltonian and a set of constants of motion 
can be diagonalized simultaneously provided 
that all these constants of motion commute 
with each other.  

• The density matrix does not move in the 
Heisenberg picture



• if an observable Bs(t) is explicitly time-
dependent in the Schrodinger picture, 

• the Hamiltonian Hs(t) itself be time-
dependent in the Schrodinger picture 

AH ′t ,t( ) =U † ′t ,t( )ASU ′t ,t( )

 
i ∂
∂t
AH t, ′t( ) = A t, ′t( ),HH t, ′t( )⎡⎣ ⎤⎦

 
i d
dt
BH t( ) = i ∂

∂t
BH t( ) + BH t( ),H⎡⎣ ⎤⎦



time-energy uncertainty relation 

• start at t=0 with a system in a non-
stationary state |Φ>

• the probability that the evolving system is 
still in |Φ> at time t 

 
P t( ) = Φ e− iHt  Φ

2
= dEe− iEt wΦ E( )

0

∞

∫
2

wΦ E( ) = Ea Φ
a
∑ 2



• The general uncertainty relation for non-
commuting observables 

• define the function τ t( ) = P t( )
dP t( ) t

 
P t( )ΔE ≥ 1

2
P t( ),H⎡⎣ ⎤⎦ ≥ 1

2

dP t( )
dt

 
τ t( ) ΔE ≥ 

2



lifetime 
• the exponential decay law when τ is time-

independent:

• The spectral density to the exponential 
decay law

•  Γ is the width of the decaying state. 

P t( ) = e− t τ

wΦ E( ) = 1
π

1
2 Γ

E − E0( )2 + 1
4 Γ

2

 
Γ = 

τ


