Equation of motion

Canonical Commutation Rules

- Hermitian coordinate and momentum operators are postulated to obey the following canonical commutation rules

$$
\begin{gathered}
{\left[q_{i}, p_{j}\right]=i \hbar \delta_{i j}} \\
{\left[q_{i}, q_{j}\right]=\left[p_{i}, p_{j}\right]=0}
\end{gathered}
$$

- Because all the q's commute, they can be diagonalized simultaneously; the same goes for the p 's.

$$
\begin{aligned}
& \left|q_{1}^{\prime}, q_{2}^{\prime} \cdots, q_{3 N}^{\prime}\right\rangle=\left|q_{1}^{\prime}\right\rangle \otimes\left|q_{2}^{\prime}\right\rangle \cdots \otimes\left|q_{3 N}^{\prime}\right\rangle \\
& \left|p_{1}^{\prime}, p_{2}^{\prime} \cdots, p_{3 N}^{\prime}\right\rangle=\left|p_{1}^{\prime}\right\rangle \otimes\left|p_{2}^{\prime}\right\rangle \cdots \otimes\left|p_{3 N}^{\prime}\right\rangle
\end{aligned}
$$

generalization of commutation rules

- to examine one degree of freedom

$$
\begin{gathered}
{[q, p]=i \hbar} \\
{\left[q, p^{n}\right]=i n \hbar p^{n-1} \quad\left[p, q^{n}\right]=-i n \hbar q^{n-1}}
\end{gathered}
$$

- a generalization gives

$$
[q, G(p)]=i \hbar \frac{\partial G}{\partial p} \quad[p, F(q)]=-i \hbar \frac{\partial F}{\partial q}
$$

spatial translation

- unitary operator

$$
T(a)=e^{-\frac{i a p}{\hbar}}
$$

- a is any real number having the dimension of length. $T(a)$ is unitary

$$
\begin{gathered}
{[q, T(a)]=i \hbar \frac{\partial}{\partial p}=i \hbar \frac{-i a}{\hbar} T(a)=a T(a)} \\
q T(a)=T(a)(q+a) \\
q T(a)\left|q^{\prime}\right\rangle=T(a)(q+a)\left|q^{\prime}\right\rangle=\left(q^{\prime}+a\right) T(a)\left|q^{\prime}\right\rangle
\end{gathered}
$$

- $\quad T(a)\left|q^{\prime}\right\rangle$ is an eigenket of q with eigenvalue of $(q+a)$
- because T is unitary, it preserves norms

$$
T(a)\left|q^{\prime}\right\rangle=\left|q^{\prime}+a\right\rangle
$$

- the unitary transformation of the coordinate operator corresponding to a spatial translation.

$$
\begin{aligned}
& q T(a)=T(a)(q+a) \\
& T^{\dagger}(a) q T(a)=q+a
\end{aligned}
$$

translation in momentum space

- the unitary operator

$$
\begin{gathered}
K(k)=e^{\frac{i q k}{\hbar}} \\
K^{\dagger}(k) p K(k)=p+k \\
K(k)\left|p^{\prime}\right\rangle=\left|p^{\prime}+k\right\rangle
\end{gathered}
$$

- Translations in momentum space are often referred to as boosts.

time-energy commutator

- put time on the same footing as the spatial coordinates by generalizing the commutation rule to one between 4 -vectors for position and momentum.

$$
[t, H]=-i \hbar
$$

- if t is to have a continuous spectrum like the coordinates, then so must H; i.e., there could be no lower bound to energies and no bound states with discrete energies!

Schrodinger Wave Functions

- Schrodinger wave function is the scalar product

$$
\left\langle q_{1}^{\prime} \cdots \mid \psi\right\rangle
$$

- transformation function between the coordinate and momentum

$$
\begin{aligned}
\left\langle q^{\prime} \mid p^{\prime}\right\rangle & =\left\langle q^{\prime}=0\right| T^{\dagger}\left(q^{\prime}\right)\left|p^{\prime}\right\rangle=e^{\frac{i p^{\prime} q^{\prime}}{\hbar}}\left\langle q^{\prime}=0 \mid p^{\prime}\right\rangle \\
& =e^{\frac{i q^{\prime} q^{\prime}}{\hbar}}\left\langle q^{\prime}=0\right| K\left(p^{\prime}\right)\left|p^{\prime}=0\right\rangle \\
& =e^{\frac{i q^{\prime} q^{\prime}}{\hbar}}\left\langle q^{\prime}=0 \mid p^{\prime}=0\right\rangle
\end{aligned}
$$

- The constant is determined by requiring

$$
\begin{aligned}
\left\langle q^{\prime} \mid q^{\prime \prime}\right\rangle & =\int d p^{\prime}\left\langle q^{\prime} \mid p^{\prime}\right\rangle\left\langle p^{\prime} \mid q^{\prime \prime}\right\rangle=\delta\left(q^{\prime}-q^{\prime \prime}\right) \\
& =\int d p^{\prime} e^{\frac{i p^{\prime}\left(q^{\prime}-q^{\prime}\right)}{h}}\left|\left\langle q^{\prime}=0 \mid p^{\prime}=0\right\rangle\right|^{2}
\end{aligned}
$$

- the Fourier representation of the delta function:

$$
\begin{gathered}
\delta\left(q^{\prime}\right)=\int \frac{d p^{\prime}}{2 \pi \hbar} e^{\frac{i q^{\prime} q^{\prime}}{\hbar}} \\
\left|\left\langle q^{\prime}=0 \mid p^{\prime}=0\right\rangle\right|^{2}=(2 \pi \hbar)^{-1} \\
\left\langle q^{\prime} \mid p^{\prime}\right\rangle=\frac{1}{\sqrt{2 \pi \hbar}} e^{\frac{i p^{\prime} q^{\prime}}{\hbar}}
\end{gathered}
$$

momentum space wave functions

- Configuration and wave functions

$$
\varphi\left(q^{\prime}\right)=\left\langle q^{\prime} \mid \psi\right\rangle
$$

- momentum space wave functions

$$
\begin{aligned}
\phi\left(p^{\prime}\right)= & \left\langle p^{\prime} \mid \psi\right\rangle \\
& =\int d q^{\prime}\left\langle p^{\prime} \mid q^{\prime}\right\rangle\left\langle q^{\prime} \mid \psi\right\rangle \\
& =\int \frac{d q^{\prime}}{\sqrt{2 \pi \hbar}} e^{-i p q^{\prime}}\left\langle q^{\prime} \mid \psi\right\rangle=\int \frac{d q^{\prime}}{\sqrt{2 \pi \hbar}} e^{-i \frac{i q^{\prime} q^{\prime}}{\hbar}} \varphi\left(q^{\prime}\right) \\
& \varphi\left(q^{\prime}\right)=\int \frac{d p^{\prime}}{\sqrt{2 \pi \hbar}} e^{\frac{i q^{\prime} q^{\prime}}{\hbar}} \phi\left(p^{\prime}\right)
\end{aligned}
$$

The density matrix

$$
\begin{aligned}
&\left\langle q^{\prime}\right| \rho\left|q^{\prime \prime}\right\rangle=\varphi^{*}\left(q^{\prime}\right) \varphi\left(q^{\prime \prime}\right) \quad\left\langle p^{\prime}\right| \rho\left|p^{\prime \prime}\right\rangle=\phi^{\prime \prime}\left(p^{\prime}\right) \phi\left(p^{\prime \prime}\right) \\
&\left\langle p^{\prime}\right| \rho\left|p^{\prime \prime}\right\rangle=\int d q^{\prime} d q^{\prime \prime}\left\langle p^{\prime} \mid q^{\prime}\right\rangle\left\langle q^{\prime}\right| \rho\left|q^{\prime \prime}\right\rangle\left\langle q^{\prime \prime} \mid p^{\prime \prime}\right\rangle \\
&=\int \frac{d q^{\prime} d q^{\prime \prime}}{2 \pi \hbar} e^{\frac{-i p^{\prime} q^{\prime}}{\hbar}} e^{\frac{i q^{\prime}}{}{ }^{\prime \prime}}\left\langle q^{\prime}\right| \rho\left|q^{\prime \prime}\right\rangle
\end{aligned}
$$

- to compute the momentum distribution one must know the off- diagonal elements of p in the coordinate representation.
- the probability distribution for a complete set of compatible observables does not determine the probability distribution for an incompatible observable.

action of the momentum

operator

- action of the momentum operator on configuration space wave functions

$$
\begin{aligned}
\left\langle q^{\prime}\right| p^{n}\left|q^{\prime \prime}\right\rangle & =\int d p^{\prime}\left\langle q^{\prime} \mid p^{\prime}\right\rangle\left(p^{\prime}\right)^{n}\left\langle p^{\prime} \mid q^{\prime \prime}\right\rangle \\
& =\int \frac{d p^{\prime}}{2 \pi \hbar}\left(p^{\prime}\right)^{n} e^{\frac{i p^{\prime}\left(q^{\prime}-q^{\prime}\right)}{\hbar}}
\end{aligned}
$$

- n -th derivative of a delta function:

$$
\begin{gathered}
\delta(x)=\int d k e^{i k x} \quad \frac{d^{n} \delta(x)}{d x}=\delta^{(n)}(x)=\int d k(i k)^{n} e^{i k x} \\
\int \delta^{(n)}\left(x-x^{\prime}\right) f\left(x^{\prime}\right) d x^{\prime}=\frac{d^{n} f(x)}{d x^{n}}
\end{gathered}
$$

$$
\begin{aligned}
&\left\langle q^{\prime} \mid q^{\prime \prime}\right\rangle= \delta\left(q^{\prime}-q^{\prime \prime}\right) \\
&\left\langle q^{\prime}\right| p^{n}\left|q^{\prime \prime}\right\rangle=\int \frac{d p^{\prime}}{2 \pi}\left(p^{\prime}\right)^{\prime} e^{\frac{i}{\prime}\left(q q^{\prime} q^{\prime}\right.}{ }^{\prime \prime} \\
&=\left(\frac{\hbar}{i}\right)^{n} \delta^{(n)}\left(q^{\prime}-q^{\prime \prime}\right) \\
&\left\langle q^{\prime}\right| p^{n}|\psi\rangle=\int d q^{\prime \prime}\left\langle q^{\prime}\right| p^{n}\left|q^{\prime \prime}\right\rangle\left\langle q^{\prime \prime} \mid \psi\right\rangle \\
&=\left(\frac{\hbar}{i}\right)^{n} \int d q^{\prime \prime} \delta^{(n)}\left(q^{\prime}-q^{\prime \prime}\right) \varphi\left(q^{\prime \prime}\right) \\
&=\left(\frac{\hbar}{i}\right)^{n} \frac{d^{n} \varphi\left(q^{\prime}\right)}{d q^{\prime \prime}}=\left(\frac{\hbar}{i} \frac{\partial}{\partial q^{\prime}}\right)^{n} \varphi\left(q^{\prime}\right) \\
& \text { Also } \quad\left\langle p^{\prime}\right| q^{n}|\psi\rangle=\left(i \hbar \frac{\partial}{\partial p^{\prime}}\right)^{n} \phi\left(p^{\prime}\right)
\end{aligned}
$$

in higher degree freedoms

- The displacement by the 3 -vector a is to be produced by a unitary operator $T(a)$ that

$$
\begin{aligned}
& T^{\dagger}(\mathbf{a}) \mathbf{x}_{n} T(\mathbf{a})=\mathbf{x}_{n}+\mathbf{a} \quad n: \text { particle index } \\
& T(\mathbf{a})=\prod_{n=1}^{N} e^{-\frac{i \mathbf{p}_{n} \mathbf{a}}{\hbar}} \\
&=\exp \left(\sum_{n}-\frac{i \mathbf{p}_{n} \cdot \mathbf{a}}{\hbar}\right) \\
&=e^{-\frac{-\mathbf{P} \mathbf{a}}{\hbar}}
\end{aligned}
$$

total momentum $\quad \mathbf{P}=\sum_{n} \mathbf{p}_{n}$

uncertainty

- a precise definition of the uncertainty is the root-mean- square dispersion

$$
\Delta A=\sqrt{\langle A-\langle A\rangle\rangle}=\sqrt{\left\langle A^{2}\right\rangle-\langle A\rangle^{2}}
$$

- the second moment of the probability distribution

$$
\Delta A=\sum_{a}\left(a^{2}-\langle A\rangle\right)|\langle a \mid \phi\rangle|^{2}
$$

uncertainty relation

- Let B be an observable that does not commute with A.

$$
\begin{array}{cc}
\bar{A}=A-\langle A\rangle & \bar{A}|\phi\rangle=\left|\phi_{A}\right\rangle \\
\bar{B}=B-\langle B\rangle & \bar{B}|\phi\rangle=\left|\phi_{B}\right\rangle \\
(\Delta A \Delta B)^{2}=\left\langle\bar{A}^{2}\right\rangle\left\langle\bar{B}^{2}\right\rangle=\left\langle\phi_{A} \mid \phi_{A}\right\rangle\left\langle\phi_{B} \mid \phi_{B}\right\rangle
\end{array}
$$

- Schwartz inequality

$$
(\Delta A \Delta B)^{2}=\left\langle\bar{A}^{2}\right\rangle\left\langle\bar{B}^{2}\right\rangle \geq|\langle\bar{A} \bar{B}\rangle|^{2}
$$

- Decompose

$$
\begin{aligned}
\bar{A} \bar{B} & =\frac{1}{2}[\bar{A}, \bar{B}]+\frac{1}{2}\{\bar{A}, \bar{B}\} \\
& =\frac{1}{2}[A, B]+\frac{1}{2}\{\bar{A}, \bar{B}\} \quad[A, B]=i C
\end{aligned}
$$

- Because C and $\{\bar{A}, \bar{B}\}$ are Hermitians, the average value of C and $\{\bar{A}, \bar{B}\}$ are real

$$
\langle\bar{A} \bar{B}\rangle^{2}=\frac{1}{4}|\langle\{\bar{A}, \bar{B}\}\rangle+i\langle C\rangle|^{2}=\frac{1}{4}\left[\langle\{\bar{A}, \bar{B}\}\rangle^{2}+\langle C\rangle^{2}\right]
$$

- the general form of Heisenberg's uncertainty relation.

$$
\Delta A \Delta B \geq \frac{1}{2}|\langle[A, B]\rangle|
$$

- For the canonical variables

$$
\Delta p_{i} \Delta q_{j} \geq \frac{1}{2} \hbar \delta_{i j}
$$

- remark:

$$
\begin{gathered}
\langle\{\bar{A}, \bar{B}\}\rangle=0 \\
\left\langle\bar{A}^{2}\right\rangle\left\langle\bar{B}^{2}\right\rangle=|\langle\bar{A} \bar{B}\rangle|^{2} \quad \text { if } \quad\left|\phi_{A}\right\rangle \propto\left|\phi_{B}\right\rangle
\end{gathered}
$$

The Schrodinger Picture

- The basic assumption will be that time evolution is represented by a unitary transformation parametrized by a continuous parameter t
- if $\mathrm{I} \varphi ; 0>$ is some state of a system at $t=0$, then at a later time $I \varphi ; \mathrm{t}>=L_{t}|\varphi ; 0\rangle$, where L_{t} is a linear operator.
- For some time-independent observable, A, its expectation value as a function of time

$$
\langle\phi ; t| A|\phi ; t\rangle=\sum_{a} a|\langle a \mid \phi ; t\rangle|^{2}
$$

- the probabilities for the various eigenvalues will change with time, but by hypothesis, not the eigenvalues themselves.

$$
\langle\phi ; 0| L_{t}^{\dagger} A L_{t}|\phi ; 0\rangle=\sum_{a_{t}} a_{t}\left|\left\langle a_{t} \mid \phi ; 0\right\rangle\right|^{2}
$$

Here a_{t} are the eigenvalues of

$$
L_{t}^{\dagger} A L_{t}
$$ $\left|a_{t}\right\rangle$ are the eigenvectors of

- any unitary transformation of a Hermitian operator leave its spectrum invariant. L_{t} is a unitary operator.
- The unitary operators must only depend on time differences

$$
|\phi ; t\rangle=U\left(t-t^{\prime}\right)\left|\phi ; t^{\prime}\right\rangle
$$

- and satisfy the following composition law:

$$
\begin{gathered}
U\left(t_{1}\right) U\left(t_{2}\right)=U\left(t_{1}+t_{2}\right) \\
U(t)=[U(t / N)]^{N}
\end{gathered}
$$

infinitesimal time

- When $\quad \delta t \rightarrow 0 \quad U(\delta t) \rightarrow 1$
- The possible unitary matrix

$$
U(\delta t)=1+i \Delta(\delta t)
$$

- $\Delta(\delta t)$ must be an infinitesimal Hermitian operator to first order (but why?)
- The composition law implies that Δ is linear in t

$$
\begin{aligned}
\Delta\left(\delta t_{1}\right)+\Delta\left(\delta t_{2}\right) & =\Delta\left(\delta t_{1}+\delta t_{2}\right) \\
\Delta(\delta t) & \propto \delta t
\end{aligned}
$$

- The result can be expressed as

$$
U(\delta t)=1-\frac{i}{\hbar} \delta t H
$$

- The operator H has the dimension of energy. it is Hamiltonian of the system in question.
- For finite time differences,

$$
\begin{aligned}
U(t) & =[U(t / N)]^{N}=\lim _{N \rightarrow \infty}\left(1-\frac{i}{\hbar} \frac{H t}{N}\right)^{N} \\
& =\exp \left(-\frac{i}{\hbar} H t\right)
\end{aligned}
$$

- the time derivative of U is

$$
\begin{gathered}
U(\delta t+t)-U(t)=[U(\delta t)-1] U(t)=\left(1-\frac{i}{\hbar} \delta t H\right) U(t) \\
\frac{\partial U}{\partial t}=\frac{U(\delta t+t)-U(t)}{\delta t}=-\frac{i}{\hbar} H U(t)
\end{gathered}
$$

- The solution for initial condition that $U(0)=1$

$$
U(t)=\exp \left(-\frac{i}{\hbar} H t\right)
$$

Schrodinger equation

- The Schrodinger equation

$$
\begin{gathered}
|\phi ; t\rangle=U\left(t-t^{\prime}\right)\left|\phi ; t^{\prime}\right\rangle \\
i \hbar \frac{\partial}{\partial t}|\phi ; t\rangle=i \hbar \frac{\partial}{\partial t} U(t)|\phi ; 0\rangle=H U(t)|\phi ; 0\rangle=H|\phi ; t\rangle
\end{gathered}
$$

- a ket $\left|\psi_{E} ; t\right\rangle$ energy eigenstates satisfies time independent Schrodinger eq. $(H-E)\left|\psi_{E} ; t\right\rangle=0$

$$
\left|\psi_{E} ; t\right\rangle=e^{-\frac{i}{\hbar} E t}\left|\psi_{E} ; 0\right\rangle
$$

- stationary states because they do not change in time aside from a phase factor.
- the matrix elements of any time-independent observable A between stationary states also have a time dependence that is merely a phase:

$$
\left\langle\psi_{E} ; t\right| A\left|\psi_{E} ; t\right\rangle=e^{\frac{i}{\hbar}\left(E-E^{\prime}\right) t}\left\langle\psi_{E} ; 0\right| A\left|\psi_{E^{\prime}} ; 0\right\rangle
$$

- for any operator

$$
\left\langle\psi_{E}\right|[A, H]\left|\psi_{E}\right\rangle=0
$$

the coordinate representation

- N -particle hamiltonian

$$
H=\sum_{n} \frac{p_{n}^{2}}{2 m_{n}}+V\left(x_{1}, x_{2} \cdots, x_{N}\right)
$$

- denote a coordinate eigenket $\left|r_{1}, r_{2} \cdots, r_{N}\right\rangle$

$$
\left\langle r_{1}, r_{2} \cdots, r_{N}\right| p_{n}|\phi ; t\rangle=\frac{\hbar}{i} \frac{\partial}{\partial x_{n}} \phi\left(r_{1}, r_{2} \cdots, r_{N} ; t\right)
$$

- Schrodinger equation in the coordinate representation:

$$
\begin{gathered}
i \hbar \frac{\partial}{\partial t}|\phi ; t\rangle=H|\phi ; t\rangle \\
i \hbar \frac{\partial}{\partial t} \phi(t)=\left[\sum_{n} \frac{1}{2 m_{n}}\left(\frac{\hbar}{i} \frac{\partial}{\partial x_{n}}\right)^{2}+V\right] \phi(t)
\end{gathered}
$$

- the scalar product of any two solutions of the time-dependent Schrodinger equation is independent of time.

Probability distribution

- the coordinate space probability distribution,

$$
w\left(r_{1}, r_{2} \cdots, r_{N} ; t\right)=\left|\phi\left(r_{1}, r_{2} \cdots, r_{N} ; t\right)\right|^{2}
$$

- constancy of the norm

$$
\frac{\partial}{\partial t} \int d^{3} r_{1} d^{3} r_{2} \cdots d^{3} r_{N} w\left(r_{1}, r_{2} \cdots, r_{N} ; t\right)=0
$$

continuity equation

- in any infinitesimal region of configuration space,

$$
\frac{\partial}{\partial t} w\left(r_{1}, r_{2} \cdots, r_{N} ; t\right)+\sum_{n} \frac{\partial}{\partial r_{n}} \cdot \mathbf{i}_{n}\left(r_{1}, r_{2} \cdots, r_{N} ; t\right)=0
$$

- probability flow

$$
\mathbf{i}_{n}\left(r_{1}, r_{2} \cdots, r_{N} ; t\right)=\frac{\hbar}{2 m_{n} i}\left(\phi^{*} \frac{\partial \phi}{\partial r_{n}}-\phi \frac{\partial \phi^{*}}{\partial r_{n}}\right)
$$

Derivation

$$
\begin{gathered}
i \hbar \frac{\partial}{\partial t}|\phi ; t\rangle=H|\phi ; t\rangle \quad-i \hbar \frac{\partial}{\partial t}\langle\phi ; t|=\langle\phi ; t| H \\
i \hbar \frac{\partial}{\partial t}|\phi(r)|^{2}=i \hbar \frac{\partial}{\partial t}|\langle\phi ; t \mid r\rangle|^{2}=\langle\phi ; t \mid r\rangle\langle r| H|\phi ; t\rangle-\langle\phi ; t| H|r\rangle\langle r \mid \phi ; t\rangle
\end{gathered}
$$

- potentialV is diagonal in the coordinate representation

$$
\langle\phi ; t \mid r\rangle\langle r| V|\phi ; t\rangle-\langle\phi ; t| V|r\rangle\langle r \mid \phi ; t\rangle=0
$$

Derivation

- Kinetic energy part

$$
\begin{aligned}
& \langle\phi ; t \mid r\rangle\langle r| K|\phi ; t\rangle-\langle\phi ; t| K|r\rangle\langle r \mid \phi ; t\rangle \\
& =-\frac{\hbar^{2}}{2 m}\left[\phi^{*}(r) \frac{\partial^{2}}{\partial r^{2}} \phi(r)-\phi(r) \frac{\partial^{2}}{\partial r^{2}} \phi^{*}(r)\right] \\
& =-\frac{\hbar^{2}}{2 m} \frac{\partial}{\partial r} \cdot\left(\phi^{*}(r) \frac{\partial \phi(r)}{\partial r}-\phi(r) \frac{\partial \phi^{*}(r)}{\partial r}\right)
\end{aligned}
$$

charged particles

- charge density

$$
\rho(r, t)=\sum_{n} e_{n} \int d^{3} r_{1} d^{3} r_{2} \cdots d^{3} r_{N} \delta\left(r-r_{n}\right) w\left(r_{1}, r_{2} \cdots, r_{N} ; t\right)
$$

- current density

$$
\mathbf{j}(r, t)=\sum_{n} e_{n} \int d^{3} r_{1} d^{3} r_{2} \cdots d^{3} r_{N} \delta\left(r-r_{n}\right) \mathbf{i}_{n}\left(r_{1}, r_{2} \cdots, r_{N} ; t\right)
$$

Density matrix

- Let $\{\mathrm{a}>\}$ be a basis that diagonalizes the density matrix

$$
\rho(0)=\sum_{a}|a\rangle p_{a}\langle a|
$$

- At time t $\quad|a\rangle \rightarrow \exp (-i H t / \hbar)|a\rangle$

$$
\rho(t)=e^{-i H t / h} \rho(0) e^{i H t / h}
$$

- The equation of motion for the density matrix

$$
\begin{aligned}
& i \hbar \frac{d}{d t} \rho(t)=i \hbar \frac{d}{d t}\left[e^{-i H t / h} \rho(0) e^{i H H / \hbar}\right] \\
& =H e^{-i H t / h} \rho(0) e^{i H / / \hbar}-e^{-i H t / \hbar} \rho(0) e^{i H / / h} H \\
& =[H, \rho(t)]
\end{aligned}
$$

time-dependent hamiltonian

- unitary time evolution operator $\mathrm{U}\left(\mathrm{t}, \mathrm{t}^{\prime}\right)$ depends on both of its arguments
- infinitesimal time transformations

$$
\begin{gathered}
U\left(t+\delta_{1}+\delta_{2}, t+\delta_{1}\right) U\left(t+\delta_{1}, t\right)=U\left(t+\delta_{1}+\delta_{2}, t\right) \\
U\left(t+\delta_{1}, t\right)=1+i F(t, \delta)
\end{gathered}
$$

- F should be proportional to δ

$$
\begin{gathered}
F\left(t, \delta_{1}\right)+F\left(t, \delta_{2}\right)=F\left(t, \delta_{1}+\delta_{2}\right) \quad F(t, \delta t)=H(t) \delta t / \hbar \\
U\left(t+\delta t, t^{\prime}\right)=U(t+\delta t, t) U\left(t, t^{\prime}\right)=U\left(t, t^{\prime}\right)-i H(t) \delta t U\left(t, t^{\prime}\right) / \hbar \\
i \hbar \frac{\partial}{\partial t} U\left(t, t^{\prime}\right)=H(t) U\left(t, t^{\prime}\right)
\end{gathered}
$$

Heisenberg picture

- The Heisenberg picture is better suited to bringing out fundamental features, such as symmetries and conservation laws, and it is indispensable in systems with many degrees of freedom,
- The matrix elements of a time-independent observable A in the moving basis are

$$
\left\langle\psi_{b} ; t\right| A\left|\psi_{b^{\prime}} ; t\right\rangle=\left\langle\psi_{b} ; 0\right| e^{i H / t h} A e^{-i t H / \hbar}\left|\psi_{b^{\prime}} ; 0\right\rangle
$$

- In the Heisenberg picture, kets that describe the time evolution of pure states are fixed in the Hilbert space, and observables A that are time-independent in the Schrodinger picture are replaced by operators $A(t)$ that evolve with the unitary transformation

$$
A(t)=e^{i H / / \hbar} A e^{-i H / / \hbar}
$$

- equation of motion

$$
i \hbar \frac{d}{d t} A(t)=[A(t), H]
$$

- Observables that commute with the Hamiltonian are constants of motion.
- Anyone constant of motion can be diagonalized simultaneously with the Hamiltonian, i.e, they possess simultaneous eigenstates. The Hamiltonian and a set of constants of motion can be diagonalized simultaneously provided that all these constants of motion commute with each other.
- The density matrix does not move in the Heisenberg picture
- if an observable $\mathrm{Bs}(\mathrm{t})$ is explicitly timedependent in the Schrodinger picture,

$$
i \hbar \frac{d}{d t} B_{H}(t)=i \hbar \frac{\partial}{\partial t} B_{H}(t)+\left[B_{H}(t), H\right]
$$

- the Hamiltonian $\mathrm{Hs}(\mathrm{t})$ itself be timedependent in the Schrodinger picture

$$
\begin{gathered}
A_{H}\left(t^{\prime}, t\right)=U^{\dagger}\left(t^{\prime}, t\right) A_{S} U\left(t^{\prime}, t\right) \\
i \hbar \frac{\partial}{\partial t} A_{H}\left(t, t^{\prime}\right)=\left[A\left(t, t^{\prime}\right), H_{H}\left(t, t^{\prime}\right)\right]
\end{gathered}
$$

time-energy uncertainty relation

- start at $\mathrm{t}=0$ with a system in a nonstationary state |Ф>
- the probability that the evolving system is still in $\mid \Phi>$ at time t

$$
\begin{gathered}
\left.P(t)=\left|\langle\Phi| e^{-i H t / \hbar}\right| \Phi\right\rangle\left.\right|^{2}=\left|\int_{0}^{\infty} d E e^{-i E t / \hbar} w_{\Phi}(E)\right|^{2} \\
w_{\Phi}(E)=\sum_{a}|\langle E a \mid \Phi\rangle|^{2}
\end{gathered}
$$

- The general uncertainty relation for noncommuting observables

$$
P(t) \Delta E \geq \frac{1}{2}|\langle[P(t), H]\rangle| \geq \frac{1}{2} \hbar\left\langle\frac{d P(t)}{d t}\right\rangle
$$

- define the function $\tau(t)=\frac{P(t)}{d P(t) / t}$

$$
\langle\tau(t)\rangle \Delta E \geq \frac{\hbar}{2}
$$

lifetime

- the exponential decay law when T is timeindependent:

$$
P(t)=e^{-t / \tau}
$$

- The spectral density to the exponential decay law

$$
w_{\Phi}(E)=\frac{1}{\pi} \frac{\frac{1}{2} \Gamma}{\left(E-E_{0}\right)^{2}+\frac{1}{4} \Gamma^{2}}
$$

- 「 is the width of the decaying state.

$$
\Gamma=\frac{\hbar}{\tau}
$$

