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Absorption and dispersion 



Propagation of a disturbance 

Waves A disturbance of a continuous medium that  
propagates with a fixed shape at constant velocity 

What we call “disturbance shape” 
( )( ,0)f z g z=Initial condition 

( , ) ( ,0) ( )f z t f z vt g z vt= − = −

Wave function 
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vt
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Wave equation  

The net force on a string segment 
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The above equation we call linear wave equation 
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Here we consider the mechanics of a stretched string 

The force produce an transverse acceleration 

or 



Solutions to linear wave equation 
Here we want to show that    f (z,t) = f (z − vt,0) = g(z − vt)
are the solutions to the wave equation  

( ), ( )f z t dg u u dg
z du z du
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Solutions to linear wave equation
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This is the linear 
wave equation 
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One can also easily show that  ( , ) ( )f z t h z vt= +
are also the solutions to the same wave equation  

for any shape h(z)  
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t du t du
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Meaning: propagation in the negative direction
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Sinusoidal waves 
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Sinusoidal wave 

Wave length 

frequency 

Wave speed 
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ν
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k
πλ =

ν	


Amplitude A 

( ) ( ), cosf z t A k z vt δ= − +⎡ ⎤⎣ ⎦

Phase  δ	


 v = λν

( ) ( ), cosf z t A kz tω δ= − + Angular frequency ω=kv 



Complex notation 
cos sinie iθ θ θ= +Euler’s formula 

( ) ( ), Re i kz tf z t Ae ω δ− +⎡ ⎤= ⎣ ⎦

Introduce the complex wave function 

   
f z,t( ) = Aei kz−ωt( )

with the complex amplitude    A = Aeiδ

The actual wave function is the real part of     
f z,t( )

   
f z,t( ) = Re f z,t( )⎡⎣ ⎤⎦

A 

δ	




Complex wave function algebra 

The combination of two wave functions 

3 1 2f f f= +

When the complex wave functions are used, one has 

   
f3 = f1 + f2 = Re f1( ) + Re f2( ) = Re f1 + f2( )

If define    
f3 = f1 + f2    

f3 = Re f3( )
In the case that three wave functions have the same k and ω	


   
A3e

i kz−ωt( ) = A1e
i kz−ωt( ) + A2e

i kz−ωt( )

And it can be simplified to    
A3 = A1 + A2

   
A3 = A1 + A2

   
A1   

A2



Linear combinations of waves 

   
f z,t( ) = A k( )ei kz−ωt( )

k
∑

In general, any wave can be expressed as a linear combination 
of sinusoidal ones 

Since the wave number k is continuous, the above equation is 
better expressed by using an integral on k 

   
f z,t( ) = A k( )ei kz−ωt( )

−∞

∞

∫ dk

The completeness and uniqueness of the above expression need 
further proof. One can refer to Fourier's theorem   



reflection and transmission of waves 

Fixed end Open end 

“Hard reflection” “soft reflection”

node antinode 

reflection transmission reflection transmission 

incidence 

Why? 



Boundary conditions for strings 
Now we impose two boundary conditions for f at z=0 

( ) ( )0 , 0 ,f t f t+ −=

0 0z z
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f 0+ ,t( ) = f 0− ,t( )
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The conditions can be expressed in terms of    
f

  
AI + AR = AT

   
k1
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Boundary conditions for strings 
f 

z 

v1 

z=0 

The incident wave 

   
fI z,t( ) = AIe

i k1z−ωt( )         z < 0

The reflected wave 

   
fR z,t( ) = ARei −k1z−ωt( )         z < 0

reflection transmission 

v1 

v2 

The transmitted wave 

   
fT z,t( ) = AT ei k2z−ωt( )         z > 0

Notice that all parts of the system are oscillating with the same frequency w	


Then the total wave function on the string is 

   

f z,t( ) =
AIe

i k1z−ωt( ) + ARei −k1z−ωt( ) for z < 0

AT ei k2z−ωt( ) for z > 0

⎧
⎨
⎪

⎩⎪



Reflection and transmission on strings 

   
AR =

k1 − k2

k1 + k2

AI =
v2 − v1

v1 + v2

AI

1
1

v
k
ω= 2

2

kv
ω

=

   
AT =

2v2

v1 + v2

AI
The transmitted wave is in 
phase with incident wave 

The reflected wave is in phase with incident 
wave when       whereas is out of phase p 
when 

1 2v v<
1 2v v>

1 2v v> 1 2v v<

  
AI

  
AR

  
AT

in phase 

out of phase p	


For fixed end,  v2=0 (or                            ), so     
f z = 0( ) = 0    

AR = − AI         AT =0 

For open end,  v2=infinite (or               ), so  
   

∂ f
∂z

z=0

= 0
   
AR = AI         AT =0 



Wave polarization 
Waves in three dimension 

Propagation direction, z 

Particle’s motion 

The blue one is called longitudinal wave 

The red ones are called transverse waves 

The polarization vector n defines the direction of vibration,  0⋅ =n z

In general, the wave with n can be expressed by two fundamental polarizations  

    
f z,t( ) = Aei k2z−ωt( )nThe wave function can be written as   

    
f z,t( ) = Acosθei k2z−ωt( )x + Asinθei k2z−ωt( )y

x 

y 
n 

θ	




http://www.optics.arizona.edu/jcwyant/
JoseDiaz/Polarization-Circular.htm

Linear polarization 

Circular polarization 



Waves in one dimension 
EM waves in vacuum 
EM waves in matter 

Absorption and dispersion 



Maxwell’s equations in vacuum 
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If one applies the curl to (3) 

(2) 
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(3) 
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The Maxwell’s equations without charge and current 
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Wave equations for E and B 

If one applies the curl to (4) 

( ) ( )

( )
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E and B satisfy the 3D wave equation 
2

2
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∂

The fields form waves and propagate in a speed of  
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Monochromatic plane waves  
Monochromatic: sinusoidal wave function 

Plane wave:  traveling in z direction without x and y dependences 

There are constrains from Maxwell’s equations 

    

∇⋅ E z,t( ) =
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+
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∂z
= 0+ 0+ ik E0,z

    ∇⋅ E z,t( ) = 0

   
E0,z = 0

It follows that EM waves are transverse 
   
B0,z = 0Similarly, 

z
∂
∂
E

Only    is non-zero  

    
E z,t( ) = E0e

i kz−ωt( )

    
B z,t( ) = B0e

i kz−ωt( )

0∇⋅ =E



The polarizations of E and B 

t
∂∇× = −
∂
BEFrom  

z
∂
∂
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Only    is non-zero  

    

∇× E = −ik E0,ye
i kz−ωt( )x + ik E0,xe
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−k E0,y =ω B0,x

k E0,x =ω B0,y

These can be expressed in a compact form 

    
B0 =

k
ω

z × E0( )

z 

x 
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The amplitudes of E and B fields satisfy 

0 0 0
1kB E E
cω
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Generalized plane wave functions 
Introduce the propagation vector, k kz→ ⋅k r

    
E r,t( ) = E0e

i k⋅r−ωt( )n

    
B r,t( ) = B0e

i k⋅r−ωt( ) = 1
c

E0e
i k⋅r−ωt( ) k̂ × n( ) = 1

c
k̂ × E

ˆ→z k

0⋅ =n k

 k  n 

Wave front plane 



Poynting’s Theorem (I) 
The energy stored in E and B fields is 

2
2

0
0

1
2

BU E dε τ
µ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∫

Here we want to derive an energy conservation law for EM field. We start 
by considering the following conditions: If there exists a charge and 
current distribution, the EM field can do a work on the charges 

( )dW d
dt

τ= ⋅∫ E J
( ) ( )dW d q q dt d dtρ τ= ⋅ = + × ⋅ = ⋅F l E v B v E v

By using Ampere-Maxwell law,  0 0 0 t
µ µ ε ∂∇× = +

∂
EB J
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1
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∂⋅ = ⋅ ∇× − ⋅
∂
EE J E B E



Poynting’s Theorem (II) 

( ) ( ) ( )∇⋅ × = ⋅ ∇× − ⋅ ∇×E B B E E B
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∫ ∫
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Poynting’s Theorem 



Poynting’s Theorem (III)  

( )
0

1
µ

= ×S E B

The Poynting vector is defined by 

It has the physical meaning of energy flux density at any point 

d⋅S a is the energy flux through area element da per unit time 

Unit: J/s m2 

emdUdW d
dt dt

= − − ⋅∫ S a
S

Work done on 
the charges 

Energy stored in field 

Energy flow 

mechdUdW
dt dt

= ( )em mech
d U U d
dt

+ = − ⋅∫ S a
S

The work done on charge would increase the mechanical energy Umech 

Energy conservation in electromagnetism 



Energy in EM waves 

2
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0
0

1
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µ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

The EM field energy density 

For a monochromatic plane EM wave 
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2 2 2
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The energy flux density transported by the wave is  
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1
µ

= ×S E B

2
0c E cuε= =S z z



Light intensity  
The energy density and energy flux is time oscillating, and one can find 
the time-averaged variables 

22
0 0 0

1
2

u E Eε ε= =

22
0 0 0

1
2

c E c Eε ε= =S z z

The averaged power per unit area transported by a EM wave is 
called the intensity 

2
0 0

1
2

I S c Eε= =



Momentum in EM fields (I) 
The total forces on charges  

( ) ( )d dρ τ ρ τ= + × = + ×∫ ∫F E v B E J B 0

ρ
ε

∇⋅ =E

0 0 0 t
µ µ ε ∂∇× = +

∂
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∂
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The force per unit volume is 



Momentum in EM fields (II) 

( ) ( ) ( ) ( ) ( )0 0 0
0 0

1 1
t

ε ε ε
µ µ

∂= ∇⋅ + ∇⋅ + ∇× × − × ∇× − ×
∂

f E E B B B B E E E B

These terms can be written as a total divergence 

    

∇⋅

T( ) j
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1
2
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⎣
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1
2
∇ j B

2⎡

⎣
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f = ∇⋅


T − ε0µ0

∂
∂t

S

     
F =


T ⋅da

S
∫ − ε0µ0

d
dt

S
V
∫ dτ

T :Maxwell stress tensor 

0d
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+ =PFFrom  0 0 dε µ τ∫S
V

is the momentum stored 
in EM fields 



Radiation pressure 
In monochromatic  plane EM waves 

( ) ( ) ( ) ( )

( ) ( )
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E
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The radiation pressure is  
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Physical interpretation of radiation pressure 

E 

B y 

x 

z 

v q= ×F v B

The E field drives the charge in the x 
direction, producing a velocity of v 

The B field further exerts a Lorentz force 
on the charge with in the z direction. 

q= ×F v B

It can be shown that over a full cycle of 
oscillation, the in-plane force which is 
produced by E is averaged to zero, while 
the out-plane force is not. 



Waves in one dimension 
EM waves in vacuum 
EM waves in matter 

Absorption and dispersion 



Propagation in linear and homogenous media 

0
0

t

t

∇⋅ =
∇⋅ =

∂∇× = −
∂

∂∇× =
∂

D
B

BE

DH

ε=D E

µ
= BH

0
0

t

t
µε

∇ ⋅ =
∇⋅ =

∂∇× = −
∂
∂∇× =
∂

E
B
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The EM wave speed is 
replaced by 

1 cv
nµε

= =

n: Index of refraction 



Energy and momentum of EM waves  
in media 

( )1
µ

= ×S E B

2
21 1

2 2
Bu Eε
µ

= +

2
0

1
2

I S vEε= =

The energy density 

The energy flux density 

The intensity 



Boundary conditions for EM waves in 
media 

1 1 2 2 0E Eε ε⊥ ⊥− =

   E1
 −E2

 = 0

   

B1


µ1

−
B2


µ2

= 0

1 2 0B B⊥ ⊥− =

No free charges and currents on the interfaces 



The reflection and transmission of EM 
waves at normal incidence 

    

E I z,t( ) = E0,Ie
i k1z−ωt( )x̂

B I z,t( ) = 1
v1

E0,Ie
i k1z−ωt( )ŷ

    

ER z,t( ) = E0,Rei −k1z−ωt( )x̂

BR z,t( ) = − 1
v1

E0,Rei −k1z−ωt( )ŷ

    

ET z,t( ) = E0,T ei k2z−ωt( )x̂

BT z,t( ) = 1
v2

E0,T ei k2z−ωt( )ŷ

x 

y 

z 

v1 

EI 

BI 

v2 

ET 

BT 

v1 

ER 

BR 

interface

Assume a linear polarized EM wave



The boundary conditions 

At z=0 

   

E0,I + E0,R = E0,T

1
µ1

1
v1

E0,I −
1
v1

E0,R

⎛

⎝⎜
⎞

⎠⎟
= 1
µ2

1
v2

E0,T

   E1
 −E2

 = 0

   

B1


µ1

−
B2


µ2

= 0

   

E0,I + E0,R = E0,T

E0,I − E0,R =
µ1v1

µ2v2

E0,T

1 1

2 2

v
v

µβ
µ

=

   

E0,R = 1− β
1+ β

E0,I

E0,T = 2
1+ β

E0,I



Analogy to string waves 

   
AR =

v2 − v1

v1 + v2

AI

   
AT =

2v2

v1 + v2

AI

For string waves Normally incident EM waves  

   

E0,R = 1− β
1+ β

E0,I

E0,T = 2
1+ β

E0,I

1

2

v
v

β =When    µ1  µ2

   

E0,R =
v2 − v1

v1 + v2

E0,I

E0,T =
2v2

v1 + v2

E0,I

In terms of refraction indices 

   

E0,R =
n1 − n2

n1 + n2

E0,I

E0,T =
2n1

n1 + n2

E0,I



Reflection and transmission coefficients 

2
0

1
2

I vEε=

   

R =
IR

I I

=
E0,R

E0,I

2

=
n1 − n2

n1 + n2

⎛

⎝⎜
⎞

⎠⎟

2

T =
IT

I I

=
ε2v2

ε1v1

E0,T

E0,I

2

=
n2

n1

2n1

n1 + n2

⎛

⎝⎜
⎞

⎠⎟

2

=
4n1n2

n1 + n2( )2

1R T+ =

The reflection coefficient 

The transmission 
coefficient 



The reflection and transmission  
at oblique incidence 

kI 

kT 
kR 

For monochromatic plane waves 

    
B I r,t( ) = 1

v1

k̂ I × E I( )
    
E I r,t( ) = E0,Ie

i k I ⋅r−ωt( )

    

ER r,t( ) = E0,Rei k R⋅r−ωt( )

BR r,t( ) = 1
v1

k̂ R × ER( )

The reflected wave The transmitted wave 

    

ET r,t( ) = E0,T ei kT ⋅r−ωt( )

BT r,t( ) = 1
v2

k̂T × ET( )

1 1 2I R Tk v k v k v ω= = = 1

2
I R T

nk k k
n

= =



The time-varying phase part 
The time-dependent parts of the field should obey 

   ( )ei k I ⋅r−ωt( ) + ( )ei k R⋅r−ωt( ) = ( )ei kT ⋅r−ωt( )

( ) ( ) ( )I R Ti t i t i te e eω ω ω⋅ − ⋅ − ⋅ −= =k r k r k r

at z=0 

at z=0 
I R T⋅ = ⋅ = ⋅k r k r k r

Orient the axes so that kI lies in the x-z plane, one 
has 

, , , 0I y R y T yk k k= = =

The incident, reflected, and transmitted wave vectors form a plane, 
which also include the normal to the surface (z-direction) 

   r  ŷ



Laws of reflection and refraction 

sin sin sinI I R R T Tk k kθ θ θ= =

, , ,I x R x T xk k k= =

kI 

kT 
kR 

θR θT 
θI 

I Rθ θ=

1 2sin sinI Tn nθ θ=

Law of reflection 

Law of refraction 

   r  x̂

Phase matching condition 

z 

x 



Boundary conditions for the  
time-independent part 

The time-independent parts of the field should obey 

1 1 2 2 0E Eε ε⊥ ⊥− =

   E1
 −E2

 = 0

   

B1


µ1

−
B2


µ2

= 0

1 2 0B B⊥ ⊥− =
    
B0,I + B0,R( )

z
= B0,T( )

z

    
ε1
E0,I + E0,R( )

z
= ε2

E0,T( )
z

    

1
µ1

B0,I + B0,R( )
x ,y

= 1
µ2

B0,T( )
x ,y

    
E0,I + E0,R( )

x ,y
= E0,T( )

x ,y

(1) 

(2) 

(3) 

(4) 

    
B0 =

1
v

k̂ × E0



Polarization in parallel to  
the plane of incidence 

    
E0,I( )

y
= E0,R( )

y
= E0,T( )

y
= 0

    
B0,I( )

x
= B0,R( )

x
= B0,T( )

x
= 0

   
ε1 − E0,I sinθ I + E0,R sinθR( ) = −ε2

E0,T sinθT

   
E0,I cosθ I + E0,R cosθR = E0,T cosθT

Consider the polarization in parallel to the plane of incidence: 

    
B0,I( )

z
= B0,R( )

z
= B0,T( )

z
= 0

kI 

kT 

kR 

θR θT 
θI EI 

ER ET 
(1) 

(3) 

(4) 
   

1
µ1v1

E0,I − E0,R( ) = 1
µ2v2

E0,T

Also called TM mode 



Fresnel equations 

   
ε1 − E0,I sinθ I + E0,R sinθR( ) = −ε2

E0,T sinθT

   
E0,I cosθ I + E0,R cosθR = E0,T cosθT

   

1
µ1v1

E0,I − E0,R( ) = 1
µ2v2

E0,T    
E0,I − E0,R = β E0,T

   
E0,I + E0,R =

cosθT

cosθ I

E0,T

   

E0,R = α − β
α + β

E0,I

E0,T = 2
α + β

E0,I in phase with incident wave 

in phase or 180o out of phase  
with incident wave 

  
α =

cosθT

cosθ I

=
1− sin2θT

cosθ I

=
1− n1 n2( )2

sin2θ I

cosθ I

One may derive the similar expressions for TE mode 

1 1

2 2

v
v

µβ
µ

=

cos
cos

T

I

θα
θ

=
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Reflection coefficient θI

ER/EI
Brewster’s angle 

n=1.5



Brewster’s angle 
1α =0Iθ =In the case of normal incidence 

α = ∞In the case of grazing incidence 90Iθ = o

   

E0,R = E0,I

E0,T = 0
Total reflection 

The condition that reflected wave is extinguished α β=

( )
2

2
2 2

1 2

1sin B
n n

βθ
β

−=
−

  µ1  µ2

2

1

n
n

β =

   
tanθB 

n2

n1

Brewster’s angle 

2
2

2 2 2

1sin
1B

β βθ
β β β−

−= =
− +

β
21 β+

1 



Reflection and transmission coefficients 
2

1 1 0
1 cos
2I I II v Eε θ=

2 2
0,

0,

2 2
0,2 2

1 1 0,

cos 2
cos

RR

I I

TT T

I I I

EIR
I E

EI vT
I v E

α β
α β

ε θ αβ
ε θ α β

⎛ ⎞ ⎛ ⎞−= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

The reflection coefficient 

2
1 1 0

1 cos
2R R RI v Eε θ=

2
2 2 0

1 cos
2T T TI v Eε θ=

1R T+ =

1 1 2 2

2 2 1 1

v v
v v

µ εβ
µ ε

= =



Waves in one dimension 
EM waves in vacuum 
EM waves in matter 

Absorption and dispersion 



EM waves in conductors 
In general the free current is not zero 

f σ=J E

1

0

f

t

t

ρ
ε

µσ µε

∇ ⋅ =

∇⋅ =
∂∇× = −
∂

∂∇× = +
∂

E

B
BE

EB E

f
f t

ρ∂
∇⋅ = −

∂
J



The charge dissipation in conductors 

Characteristic time scale  
ετ
σ

=

  
τ  1

ω Good conductor  

  
τ  1

ω
Poor conductor  

The accumulated free charges eventually dissipate after t. In this case, 
one has 

0fρ =

( )f
ft

ρ σσ ρ
ε

∂
= − ∇⋅ = −

∂
Ef

f t
ρ∂

∇⋅ = −
∂

J

( ) ( ) ( )0 t
f ft e σ ερ ρ −=

  

σ
εω
1

⎛
⎝⎜

⎞
⎠⎟

  

σ
εω
1

⎛
⎝⎜

⎞
⎠⎟

σ
εω is called loss tangent 

For metals  
ρ~ 10-7 Ωm 
 

τ~ 10-19 s



Wave equations for E and B 
0
0

t

t
µσ µε

∇ ⋅ =
∇⋅ =

∂∇× = −
∂

∂∇× = +
∂

E
B

BE

EB E

( ) ( )

( )

2

2

2

t

t t t
µσ µε

∂⎛ ⎞∇× ∇× =∇ ∇⋅ −∇ =∇× −⎜ ⎟∂⎝ ⎠
∂ ∂ ∂= − ∇× = − −
∂ ∂ ∂

BE E E

E EB

( ) ( )

( ) ( )

2

2

2

t

t t t

µσ µε

µσ µε µσ µε

∂⎛ ⎞∇× ∇× =∇ ∇⋅ −∇ =∇× +⎜ ⎟∂⎝ ⎠
∂ ∂ ∂= ∇× + ∇× = − −
∂ ∂ ∂

EB B B E

B BE E

2
2

2t t
µε µσ∂ ∂∇ = +

∂ ∂
E EE

2
2

2t t
µε µσ∂ ∂∇ = +

∂ ∂
B BB



The attenuated plane waves 

    
E z,t( ) = E0e

i kz−ωt( )

    
B z,t( ) = B0e

i kz−ωt( )

   
k 2 = µεω 2 + iµσω   k = k + iκ

1 2
2

1 1
2

k µε σω
εω

⎡ ⎤⎛ ⎞⎢ ⎥= + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

1 2
2

1 1
2
µε σκ ω

εω

⎡ ⎤⎛ ⎞⎢ ⎥= + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

    
E z,t( ) = E0e

−κ zei kz−ωt( )

    
B z,t( ) = B0e

−κ zei kz−ωt( )
The attenuated plane waves 



Low-loss dielectric (poor conductors) 

  

σ
εω
1

  

κ =ω µε
2

1+ σ
εω

⎛
⎝⎜

⎞
⎠⎟

2

−1
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

1 2

ω µε
2

1
2

σ
εω

⎛
⎝⎜

⎞
⎠⎟

2

= σ
2

µ
ε

For small loss tangent 

   

k =ω µε
2

1+ σ
εω

⎛
⎝⎜

⎞
⎠⎟

2

+1
⎡

⎣

⎢
⎢

⎤

⎦

⎥
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1 2

ω µε
2

2

=ω µε



Skin depth 

    
E z,t( ) = E0e

−κ zei kz−ωt( ) 1d
κ

=

A characteristic attenuation length: skin depth 

The real part , k represents a propagating EM wave with  

2
k
πλ = v

k
ω=

0
0

∇⋅ =
∇⋅ =
E
B

The attenuated plane waves are also transverse polarized  



Phase lag of the B field 
Re-orient the axes so that E is polarized along x direction 

    
E z,t( ) = E0e

−κ zei kz−ωt( )x̂

    
B z,t( ) = B0e

−κ zei kz−ωt( )ŷ =
k
ω
E0e

−κ zei kz−ωt( )ŷ
    
B z,t( ) = 1

ω
k × E z,t( )

In principle, the wave vector can be expressed by    k = k + iκ = Keiφ

tan
k
κφ =2 2K k κ= +

Suppose the complex numbers  
   
E0 = E0e

iδ E

   
B0 = B0e

iδ B

The two phase constants obey  E Bδ δ φ− =



The attenuated EM waves in conductor 

The field amplitudes obeys   

1 2
2

0

0

1B K
E

σεµ
ω εω

⎡ ⎤⎛ ⎞⎢ ⎥= = + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

1tan
k
κφ −=A phase lag (in space) for B field   

z 

x 

E 

B 
y 

Attenuation length: d   

Phase lag f   



Good conductors 

  

σ
εω
1

   
κ = k  µωσ

2 4
πφ =

The wave number becomes much larger  

A smaller wavelength in a good conductor  

µ0~10-6  H/m

σ~107  S m-1

Optical ω~1015  Hz

Skin depth d ~10-8  m



Reflection at a conducting surface 

conductor 
Non-conducting 
linear media 

    
E I z,t( ) = E0,Ie

i k1z−ωt( )x̂

    
B I z,t( ) = 1

v1

E0,Ie
i k1z−ωt( )ŷ

    
ET z,t( ) = E0,T ei k2z−ωt( )x̂

    
BT z,t( ) =

k2

ω
E0,T ei k2z−ωt( )ŷ

    
ER z,t( ) = E0,Rei −k1z−ωt( )x̂

    
BR z,t( ) = − 1

v1

E0,Rei −k1z−ωt( )ŷ

z 

Transmitted waves 

Incident  waves 

Reflected waves 



boundary conditions 

   
E0,I + E0,R = E0,T

1 1 2 2 fE Eε ε σ⊥ ⊥− =

   E1
 −E2

 = 0

    

B1


µ1

−
B2


µ2

= K f × n̂

1 2 0B B⊥ ⊥− =

Recall the general boundary conditions 

   

1
µ1v1

E0,I − E0,R( ) = k2

µ2ω
E0,T 0f =K

0fσ =

   
β =

µ1v1

µ2ω
k2

   

E0,R = 1− β
1+ β

E0,I

E0,T = 2
1+ β

E0,I



Reflection on a perfect conductor 

For a perfect conductor,  σ →∞

2k →∞

 
β →∞

   

E0,R  − E0,I

E0,T  0
Total reflection with a 
180o phase shift 

For silver, the skin depth is on the order of 10nm at optical frequencies 



The frequency dependence  
of permittivity 

Dispersion: the refraction index n depends on wavelength 

If the speed of wave depends on its frequency, the medium is 
called dispersive 

Wave (phase) velocity: the speed at which a sinusoidal 
component travels 

v
k
ω=

group velocity: the speed at which a wave packet travels 

g
dv
dk
ω=

The surface waves on water have a v two times of vg 



Phase velocity vs group velocity 

vg 

v 

The energy carried by a wave packet ordinarily travels at the group velocity 

In some circumstances, phase velocity is larger than c 



Atomic polarization



AC polarization in dielectrics 

The electrons are bounded to specific molecules. The binding force 
can be modeled obeying Hooke’s law: 

2
0binding sF k x m xω= − = −

z 

E 
Electron 
oscillation x 0ω Natural frequency 

There is some damping on the electron 
oscillator:  

damping
dxF m
dt

γ= −

The presence of an EM wave yields 
the electron a driving force 0 cosdrivingF qE qE tω= =

q e= − for electrons 



Damped oscillator 
The Newton’s 2nd law asserts that 

2

2 binding damping driving
d xm F F F
dt

= + +

Namely, 2
2
02 cosd x dxm m m x qE t

dt dt
γ ω ω+ + =

The equation can be re-casted in a complex form: 

   

d 2 x
dt2 + γ dx

dt
+ω0

2 x = q
m

Ee− iωt

The steady state solution is simply 
   x = x0e

− iωt



Damped oscillator 
The amplitude follows that 

   
x0 =

q m
ω0

2 −ω 2 − iγω
E0

The induced dipole moment is the real part of  

   
p = qx0 =

q2 m
ω0

2 −ω 2 − iγω
E0e

− iωt

The argument in this complex 
results in a phase lag of p to E 

  

phase = tan−1 γω
ω0

2 −ω 2

⎛

⎝⎜
⎞

⎠⎟
=

0      ω ω0

π       ω ω0

⎧
⎨
⎪

⎩⎪



Complex susceptibility 
In general, differently situated electrons in a molecule experience 
different natural frequencies and damping coefficients 

    

P = Nq2

m
f j

ω j
2 −ω 2 − iγ jωj

∑
⎛

⎝
⎜

⎞

⎠
⎟ E

If assuming fj electrons with frequency wj  and damping gj  in each 
molecule, one has the polarization given by 

or expressed by a complex susceptibility:     
P = ε0

χe
E

The  susceptibility yields a complex dielectric constant: 

   
ε r = 1+ Nq2

mε0

f j

ω j
2 −ω 2 − iγ jωj

∑
⎛

⎝
⎜

⎞

⎠
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EM waves in a dispersive medium 

    
∇2 E = µ0

ε ∂
2 E
∂t2

The complex electric field obeys the wave equation that 

Again, the plane wave solutions are 

    
E z,t( ) = E0e

i kz−ωt( )

With a complex wave number    
k = εµ0ω

expressing the wave number as    k = k + iκ

k describes the attenuation of EM waves in the medium. The intensity 
loss per unit travel distance is the absorption coefficient 2α κ=

k describes the propagation of the EM wave, and relates to 
the index of refraction as  n ck ω=



Anomalous dispersion 

   
ε r = 1+ Nq2

mε0

f j

ω j
2 −ω 2 − iγ jωj

∑

For gases, the second term is small, so the square root of εr can be 
approximated by 

   
ε r  1+ 1

2
Nq2

mε0

f j

ω j
2 −ω 2 − iγ jωj

∑

Therefore the complex wave number becomes 

   

k = ω
c

1+ 1
2

Nq2

mε0

f j

ω j
2 −ω 2 − iγ jωj

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
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Anomalous dispersion 
In turn, one has 

( )
( )

2 22 2

22 2 2 2 2 2
0 0

1 Re 1
2 2

j jj

j jj j j j

ffNq Nqn
m i m

ω ω
ε ω ω γ ω ε ω ω γ ω

−
= + = +

− − − +
∑ ∑

( )
22 2 2

22 2 2 2 2 2
0 0

2 Im j j j

j jj j j j

f fNq Nq
m c i m c

γω ωα κ
ε ω ω γ ω ε ω ω γ ω

= = =
− − − +

∑ ∑

n-1 

a	


jω1ω
2ω

Resonant absorption 
width~2γ	


Anomalous dispersion 
 1 2ω ω ω< <

Strong absorption in the 
region of anomalous 
dispersion 

The plot of n-1 and α 
near a resonant frequency 



Negative index meta materials

Electric dipole resonance 
Magnetic dipole resonance



The low frequency result 
When the EM wave frequency is much smaller than the resonant 
frequencies, one has.  

(For instance the transparent materials have the lowest significant 
resonances at UV frequencies.) 

   

n = 1+ Nq2

2mε0

f j ω j
2 −ω 2( )

ω j
2 −ω 2( )2

+ γ j
2ω 2j

∑

 1+ Nq2

2mε0

f j

ω j
2 −ω 2

j
∑  1+ Nq2

2mε0

f j

ω j
2

j
∑ 1+ ω 2

ω j
2

⎛

⎝
⎜

⎞

⎠
⎟

= 1+ Nq2

2mε0

f j

ω j
2

j
∑ + Nq2ω 2

2mε0

f j

ω j
4

j
∑
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⎛ ⎞= + +⎜ ⎟⎝ ⎠
Cauchy’s formula 




