
Many-particle systems

2018/05/20



many particle wavefunction

• many particle wavefunction

• normalization condition

• time evolution

 ψ T x1, x2, x3,, xN( )

 
 dx1 dx2dxN ψ T x1, x2, x3,, xN( ) 2∫∫∫ = 1

 
i ∂
∂t
ψ T x1, x2, x3,, xN( ) = Hψ T x1, x2, x3,, xN( )



N-noninteracting particles  

• For non-interacting particles

• Hamiltonian is separable

 V x1, x2, x3,, xN( ) =V x1( ) +V x2( ) +V xN( )

H = H j
j
∑

H j =
pj
2

2m
+V xj( )



2-particle wavefunction

• wavefunctions are separable

• for 2-particles, the following are the 
solutions to the Schrodinger equations

• energy is additive

 Hψα 1,2,,N( ) = Eαψα 1,2,,N( )

ψ E 1,2( ) =ψα x1( )ψ β x2( )

E = Eα + Eβ

ψ E 1,2( ) =ψα x2( )ψ β x1( )



identical particles
• the particles are indistinguishable

• Probability density should be invariant 
under index interchange

• The possible choices of 2-particle wave 
functions are

ψα x1( )ψ β x2( )↔ψα x2( )ψ β x1( )

ψ E
* 1,2( )ψ E 1,2( ) =ψ E

* 2,1( )ψ E 2,1( )

ψ S =
1
2

ψα x1( )ψ β x2( ) +ψ β x1( )ψα x2( )⎡⎣ ⎤⎦

ψ A =
1
2

ψα x1( )ψ β x2( )−ψ β x1( )ψα x2( )⎡⎣ ⎤⎦



index exchange
• For symmetric wavefunction

• For anti-symmetric wavefunction

ψ S 1↔2⎯ →⎯⎯ 1
2

ψα x1( )ψ β x2( ) +ψ β x1( )ψα x2( )⎡⎣ ⎤⎦ =ψ S

ψ A 1↔2⎯ →⎯⎯ 1
2

ψα x2( )ψ β x1( )−ψ β x2( )ψα x1( )⎡⎣ ⎤⎦ = −ψ A

ψ S
*ψ S 1↔2⎯ →⎯⎯ψ S

*ψ S

ψ A
*ψ A 1↔2⎯ →⎯⎯ −1( )2ψ A

*ψ A



Pauli principle

• Fermions: systems consisting identical 
particles of half-odd-integral spin are 
described by anti-symmetric wave functions

• Bosons: systems consisting identical 
particles of integral spin are described by 
symmetric wave functions

• Anyons ψα x1( )ψ β x2( ) 1↔2⎯ →⎯⎯ eiθψ β x1( )ψα x2( )



Pauli principle

• Fermions: no more than one fermion can 
be in the same quantum state.

• Why? 

ψ A =
1
2

ψα x1( )ψα x2( )−ψα x1( )ψα x2( )⎡⎣ ⎤⎦ = 0



Slater determinant

• For many particles, we can express the 
answer using the determinant

 

ψ A 1,2,,N( ) = 1
N!

ψα x1( ) ψα x2( )  ψα xN( )
ψ β x1( ) ψ β x2( )
 

ψ ρ x1( ) ψ ρ xN( )

change position
change state



antisymmetrized wavefunction

• For Fermions, the 2-particle wavefunction 
has to be anti-symmetrized

uA 1,2( ) = 1
2
uE1 x1( )uE2 x2( )− uE1 x2( )uE2 x1( )⎡⎣ ⎤⎦

1
2
sin π x1

a
⎛
⎝⎜

⎞
⎠⎟ sin

2π x2
a

⎛
⎝⎜

⎞
⎠⎟ − sin

π x2
a

⎛
⎝⎜

⎞
⎠⎟ sin

2π x1
a

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

example: 2 particles in a infinite well

ψ A 1,2,3( ) = 1
3!

ψ 1,2,3( )−ψ 2,1,3( ) +ψ 2,3,1( )⎡⎣

−ψ 3,2,1( ) +ψ 3,1,2( )−ψ 1,3,2( )⎤⎦

• 3-particle case



the necessity for 
(anti-)symmertization

• When two particles are close.

• How close? calculate the overlapping 
probability

• If it is very small, we can treat them 
separably

ψ a
* x( )ψ b x( )dx∫

ψ S ,A x1, x2( ) = 1
2

ψ a x1( )ψ b x2( ) ±ψ a x2( )ψ b x1( )⎡⎣ ⎤⎦



Probability property
• Consider the probability for the particles 

are close x1~x2

ψ A =
1
2

ψα x1( )ψ β x2( )−ψ β x1( )ψα x2( )⎡⎣ ⎤⎦

~ 1
2

ψα x1( )ψ β x1( )−ψ β x1( )ψα x1( )⎡⎣ ⎤⎦

~ 0

ψ S =
1
2

ψα x1( )ψ β x2( ) +ψ β x1( )ψα x2( )⎡⎣ ⎤⎦

~ 1
2

ψα x1( )ψ β x1( ) +ψ β x1( )ψα x1( )⎡⎣ ⎤⎦

~ 2ψα x1( )ψ β x1( )



Comparison with the 
distinguishable case

• Distinguishable at same position

• Antisymmetric

• Symmetric  

ψ =ψα x1( )ψ β x1( ) ψ *ψ =ψα
* x1( )ψα x1( )ψ β

* x1( )ψ β x1( )

ψ S
*ψ S = 2ψ

*ψ

ψ A
*ψ A = 0

particles are more separated

particles are more closed to each other



spin wavefunction
• The spin states:

• singlet is anti-symmetric under interchange 

• triplet is symmetric under interchange

1
2

χ+
1( )χ−

2( ) − χ−
1( )χ+

2( )( )

χ+
1( )χ+

2( )

1
2

χ+
1( )χ−

2( ) + χ−
1( )χ+

2( )( )
χ−
1( )χ−

2( )



Exchange force
• spatial wavefunction

• Combining spin part together

ψ S =
1
2

ψα x1( )ψ β x2( ) +ψ β x1( )ψα x2( )⎡⎣ ⎤⎦

ψ A =
1
2

ψα x1( )ψ β x2( )−ψ β x1( )ψα x2( )⎡⎣ ⎤⎦

spatial spin total

sym asym(singlet) asym

asym sym(triplet) asym



spatial-spin wavefunctions

• The probability density for x1~x2 is very 
small for spin triplet.

• The probability density for x1~x2 is slightly 
higher for spin singlet.



Coulomb interaction
• V for interparticle interaction is positive 

(same polarity)

• To reduce potential energy, separated 
particles are favored

• The spatial wavefunction is antisymmetric 
and the spin part is symmetric

• Called “exchange” interaction

repulsive force



Hartree theory

• To deal with the electron-electron 
interaction in a muliti-electron atom

• The effect is included in a local potential 
generated by all electrons

• The potential should obeys the properties

V r( ) = − Ze2

4πε0r
V r( ) = − e2

4πε0r

r→∞r→ 0



Procedures 1

• With the guessed/modified V(r), one 
numerically solve all eigenstates                    
and associated eigenenergies

• Use Pauli exclusive principle to assign total 
wavefunction without considering particle 
interactions(but not antisymmetrized)

• Electron charge distributions are obtained 
from

ψα ,ψ β ,ψγ

Eα ,Eβ ,Eγ

ψα
2 ,ψ β

2
,ψγ

2



Procedures 2

• With charge distribution, the potential 
satisfies

• Go back to step 1 with the modified V and 
recursively to obtain a converged V and 

∇2V = ρ
ε0

ρ = ρ0 − ene

ψα ,ψ β ,ψγ



Bose system
• Bosons obey symmetrized wave functions

• We may put them in the same state 

• The probability density

ψ S =
1
2

ψ β x1( )ψ β x2( ) +ψ β x1( )ψ β x2( )⎡⎣ ⎤⎦

= 2ψ β x1( )ψ β x2( )

α = β

ψ S =
1
2

ψα x1( )ψ β x2( ) +ψ β x1( )ψα x2( )⎡⎣ ⎤⎦

ψ S
∗ψ S = 2ψ β

* x1( )ψ β
* x2( )ψ β x1( )ψ β x2( )



Distinguishable case
• For distinguishable particles, the 

wavefunction is

• The probability density is

• Indistinguashability increases the probability

ψ =ψα x1( )ψ β x2( ) =ψ β x1( )ψ β x2( )

ψ *ψ =ψ β
* x1( )ψ β

* x2( )ψ β x1( )ψ β x2( )

ψ S
∗ψ S = 2ψ

*ψ



N-particle case
• Symmetrized N-particle wavefuncitons

• Probability density

• Enhancement in probability

 
ψ S =

1
N!

N!( )ψ β x1( )ψ β x2( )ψ β xN( )

 ψ S
*ψ S = N!( )ψ β

* x1( )ψ β
* x2( )ψ β

* xN( )ψ β x1( )ψ β x2( )ψ β xN( )

ψ S
*ψ S = N!( )ψ *ψ



Probability Enhancement

• For 1-particle

• For N-particle

• For N+1 particle

• The probability for more bosons joining 
together is enhanced 

P1 =ψ β
*ψ β

PN = N!P1
N = N! ψ β

*ψ β( )N

PN+1 = N +1( )!P1N+1 = N +1( )N!P1NP1
= N +1( )PNP1



density matrix
• It is an operator

• The density matrix describing a thermal 
equilibrium ensemble is define as a sum of 
projection operators onto the basis  
weighted by the Boltzmann distribution.  

• the trace of density matrix is 1

• With the density matrix, the expectation 
value of Q can be written as

ρT = pT E( ) Ea Ea
E ,a
∑ = pT E( )P Ea( )

E ,a
∑

Ea

Tr ρT = pT E( )
E ,a
∑ = 1

Q T = Tr ρTQ( )



Pure state
• Let      be some pure state, the density 

matrix is simply a projection operator

• the density matrix of a pure state is 
characterized by 

ρψ = ψ ψ = Pψ

ψ

Q ψ = ψ ′q ′q Q q
q, ′q
∑ qψ

= qψ ψ ′q ′q Q q
q, ′q
∑

= q Pψ ′q ′q Q q
q, ′q
∑ = Tr PψQ( )

ρψ
2 = ρψ Tr ρψ

2( ) = 1



• the square of the thermal density matrix 

• the trace 

ρT
2 = pT E( )⎡⎣ ⎤⎦

2 P Ea( )
E ,a
∑ P2 Ea( ) = P Ea( )

Tr ρT
2( ) = pT E( )⎡⎣ ⎤⎦

2

E ,a
∑ ≤1

Tr ρT
2( ) = 1 only T=0, a pure state of ground state

A state is pure if its density matrix P is a projection 
operator, and it is a mixture if it is not. The two 
cases are characterized by the invariant condition

with the equality only holding if the state is pure.  

Tr ρT
2( ) ≤1



• density matrix can be written in any basis, as an 
observable whose eigenvalues (pl,p2,...) satisfy 

• Let      be the orthonormal basis that diagonalizes 
p, so that 

• the expectation value of an observable Q in a 
state p, whether pure or mixed, can be written 

• the probability of a finding a state     in a mixture

0 ≤ pi ≤1 pi
i
∑ = 1

ρ = ai pi ai
i
∑

Q = Tr ρQ( )

pφ ρ( ) = Tr ρPφ( ) = pi ai φ
2

i
∑

ai

φ



von Neumann entropy 

• most important measure of the departure 
from purity 

• When p is the Boltzmann distribution, S is 
the entropy of statistical thermodynamics 

• For a pure state, where only one pi = 1 and 
the others vanish, S = O. 

S = −kTr ρ lnρ( ) k is Boltzmann's constant. 

S = −k pi ln pi
i
∑



maximal entropy
• The entropy has a maximal value

• if the Hilbert space has a finite dimension d 

• The entropy satisfies the inequalities 

δ pi ln pi + λ( ) = 0
i
∑ λ Lagrange multiplier 

for constraint pi
i
∑ = 1

δ pi ln pi + λ( ) =
i
∑ ln pi + λ( )δ pi + piδ ln pi

i
∑

= ln pi +1+ λ( )δ pi
i
∑

ln pi +1+ λ = 0 or  pi are equal

pi = 1 d

0 ≤ S ≤ −k lnd



• the density matrix that maximizes S is 

• The sum in is just the unit operator. the 
mixture in which the entropy is maximal is 
the one in which all states, in any basis, are 
populated with equal probability.  

ρmax =
1
d

ai ai
i
∑

ρmax =
1
d



• The unknown density matrix (whether pure 
or mixed) is a d-dimensional Hermitian 
matrix of unit trace is specified by d2-1 real 
parameters. 

• We need d2-1 measurement to identify the 
density matrix

ρ = ai rij a j
ij
∑ rji = rij

*

Xij =
1
2

ai aj + aj ai( )
Yij =

i
2

ai aj − aj ai( )
Tr ρXij( ) = Rerij Tr ρYij( ) = Im rij



composite system

• mixtures do not only arise when pure states 
are "mixed" by the environment.

• If a composite system is in a pure state, its 
subsystems are in general in mixed states. 

• consider a system composed of two 
subsystems with coordinates ql and q2.     
Let      be an arbitrary pure state of the 
system, with wave function           , so that 

Ψ

′q1 ′q2 ρ q1q2 = Ψ q1q2( )Ψ* ′q1 ′q2( )

Ψ q1q2( )



• Let Al be an observable of the subsystem 1; 

• the expectation value of Al in Ψ is 

• reduced density matrix 

′q1 ′q2 A1 q1q2 = ′q1 A1 q1 δ q2 − ′q2( )

A Ψ = Ψ A1 Ψ

= dq1 d ′q1 dq2 d ′q2 ′q1 A1 q1 Ψ q1q2( )Ψ* ′q1 ′q2( )δ q2 − ′q2( )∫
= dq1 d ′q1 dq2 ′q1 A1 q1 Ψ q1q2( )Ψ* ′q1q2( )∫

′q1 ρ1 q1 = dq2 ′q1q2 ρ q1q2∫

A Ψ = dq1 d ′q1 ′q1 A1 q1∫ q1 ρ1 ′q1

= Tr ρ1A1( )



entangled state
• entangled state is a pure state 

• a state cannot be written as a simple 
product 

Ψ = c1u1 q1( )v1 q2( ) + c2u2 q1( )v2 q2( ) c1
2 + c2

2 = 1

{u} and {v} are orthonormal, 

dq1ui
* q1( )uj q1( )∫ = δ ij dq2vi

* q2( )vj q2( )∫ = δ ij

Ψ =ϕ q1( )χ q2( )



• the reduced density matrix of Ψ is

• ρI does not describe a pure state of 
subsystem 1 

• Thus ρI is not pure, and cannot be 
represented by any single state in the 
Hilbert space of system 

′q1 ρ1 q1 = dq2Ψ
* ′q1q2( )Ψ q1q2( )∫

= c1
2 u*1 ′q1( )u1 q1( ) + c2 2 u*2 ′q1( )u2 q1( )

′q1 ρ
2
1 q1 = c1

4 u*1 ′q1( )u1 q1( ) + c2 4 u*2 ′q1( )u2 q1( )

Tr ρ1
2( ) = c1

4 + c2
4 <1



• the subsystem can only be pure if the 
density matrix of the whole system is of the 
form:

ρs ⊗ ρR

pure subsystem Remainder



• The two-body probability distribution 
associated with the entangled state

• the interference term describes correlations 
even though the particles do not interact 
and are far apart

p q1q2( ) = c1u1 q1( )v1 q2( ) + c2u2 q1( )v2 q2( ) 2

= c1
2 u1 q1( ) 2 v1 q2( ) 2 + c2 2 u2 q1( ) 2 v2 q2( ) 2 + I2

I2 = 2Re c1c
*
2u1 q1( )u*2 q1( )v1 q2( )v*2 q2( )⎡⎣ ⎤⎦

the interference term



2-particle interferometer
• An experimental setup allows two particles 

to traverse different paths

• It is possible to determine the path taken by 
one particle by some observation on the 
other.



coincidence probability 
vs. 1-particle probability

• neither particle will display an interference 
pattern (in Pa , Pb)

• there may be an interference pattern in the 
a-b coincidence rate Pab, in the correlation of 
positions for a and b. 

Pab = Ψ qa ,qb ,t( )

Pa qa ,t( ) = dqbPab qa ,qb ,t( )∫



2-photon interference 
experiment

• L. Mandel, Rev. Mod. Phys. 71, S274 (1999). 



• consider a pure entangled state for a two-
body system 

• The probability distribution associated with 
Φ has the two-body interference term 

• the probability distribution for a is that of a 
mixture, with the one-body interference 
term 

Φ = N ϕ1 q1( )χ1 q2( ) +ϕ2 q1( )χ2 q2( )⎡⎣ ⎤⎦

I2 = 2N Re ϕ1 q1( )ϕ *
2 q1( )χ1 q2( )χ *

2 q2( )⎡⎣ ⎤⎦

I1 = 2N
2 Re ϕ1 q1( )ϕ *

2 q1( )χ1 q2( )χ *
2 q2( )⎡⎣ ⎤⎦dq2∫

= 2N 2 Re Vϕ1 q1( )ϕ *
2 q1( )⎡⎣ ⎤⎦



• a by itself will only show an interference 
pattern if the states χl,2 of the other body b 
are not orthogonal. 

• the physical side, that the states of b do not 
unambiguously determine the path of a. 

The visibility 1V12 of the interference pattern 
displayed by a is a measure of the confidence 
with which an observation on b determines 
the state of a. 




