Random variables

Random variables

- A random variable is a numeric quantity whose value depends on the outcome of a random event.
- Mathematically, a random variable is a mapping that maps an event in the sample space to a numeric value.

Random variables

- We use a capital letter, like X, to denote a random variable (RV).
- The value of a RV is denoted with a lowercase letter, e.g., $P(X=x)$
- $P(X=2)$ is the probability that X has the value 2 .
- $P(X<10)$ is the probability that X is less than 10 .

Random variables

- Discrete random variables often take only integer values
- Example: number of students present, gender of an unborn baby
- Continuous random variables take real (decimal) values
- Example: tomorrow's PM 2.5 level, your final grade

Probability Mass Functions

- The probability mass function (PMF) of a discrete RV describes the probability of each value.
- For example, If X is the result of one roll of a fair die:

$$
\begin{gathered}
P(X=1)=\frac{1}{6} \\
P(X=2)=\frac{1}{6} \\
\ldots \\
P(X=6)=\frac{1}{6}
\end{gathered}
$$

X	$\mathrm{P}(\mathrm{X})$
1	$1 / 6$
2	$1 / 6$
\vdots	\vdots
6	$1 / 6$

Probability Mass Functions

- A PMF is often a parameterized function:

$$
P(X=k)=(1-p)^{k} p
$$

Bernoulli distribution

$X \sim \operatorname{Bern}(p)$
$P(X=1)=p, \quad P(X=0)=1-p$

- Distribution used to describe a trial with binary outcomes
- e.g. let X be 1 if a coin lands head
- fundamental tool for logistic regression

PMF for two RVs

- Joint PMF: the list of $P(X=x, Y=y)$
- Marginal PMF: $P(X=x)=\sum_{y \in \mathbb{Y}} P(X=x, Y=y)$
- Conditional PMF: $P(Y=y \mid X=x)=\frac{P(X=x, Y=y)}{P(X=x)}$

Independence

- Two RVs X and Y are independent iff

$$
P(X=x, Y=y)=P(X=x) \cdot P(Y=y)
$$

for all $x \in \mathbb{X}$ and $y \in \mathbb{Y}$

Cumulative Distribution

Function

- The cumulative distribution function (CDF) for a discrete RV is

$$
F(x)=P(X \leq x)=\sum_{t \leq x} f(t)
$$

Probability density function

A probability density function (PDF) of a continuous RV is a function satisfying the following properties:

1. $f_{X}(x) \geq 0,-\infty<x<\infty$
2. $\int_{-\infty}^{\infty} f_{X}(x) d x=1$
3. $P(a<X \leq b)=\int_{a}^{b} f_{X}(x) d x$

Probabilities from continuous distributions

- For a continuous random variable X, the probability $P(X=x)$ is defined as 0 (recall the definition of a distribution)
- $P(a<X \leq b)=F_{X}(b)-F_{X}(a)=\int_{a}^{b} f(x) d x$

Normal

- If X is a continuous RV with pdf

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}},
$$

then $X \sim N\left(\mu, \sigma^{2}\right)$

- Useful for regression

Normal

CDF for a continuous RV

- The CDF for a continuous random variable is

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t
$$

Transformation of a RV

- A Transformation of a RV is another RV, e.g. X^{2} is another RV if X is a RV

Expectation

- The expectation $E(X)$ is the long-run average value of X; that is, the average value when the trial is repeated for infinitely many times.
- For a discrete RV,

$$
E(X)=\sum_{x \in \mathbb{X}} x \cdot P(X=x)
$$

- For a continuous RV,

$$
E(X)=\int x \cdot f_{X}(x) d x
$$

Example: Bernoulli RV

$X \sim \operatorname{Bern}(p)$

$$
\begin{aligned}
E(X) & =\sum_{x \in \mathbb{X}} x \cdot P(X=x) \\
& =(1)(p)+(0)(1-p) \\
& =p
\end{aligned}
$$

- Note that $E(X)$ does not have to be a value that X can take.
- In this case X is either 0 or 1 , but $E(X)=p$

Linearity of expectation

- For any RVs X and Y and constants a and b :

$$
E(a X+b Y)=a E(X)+b E(Y)
$$

- This holds even when X and Y are not independent!

Variance

- The variance of a RV is the average squared deviation of the variable around its mean (its expected value):

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left([X-E(X)]^{2}\right) \\
& =E\left((X-\mu)^{2}\right)
\end{aligned}
$$

- With some algebra, you can show that

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}
$$

Mean vs variance

Low Variance

High Variance

Example: Bernoulli RV

$$
\begin{aligned}
E\left(X^{2}\right) & =\left(1^{2}\right) p+\left(0^{2}\right)(1-p)=p \\
\operatorname{Var}(X) & =E\left(X^{2}\right)-E(X)^{2} \\
& =p-p^{2}=p(1-p)
\end{aligned}
$$

Variance properties

- If X is a RV and a is a constant, this is always true:

$$
\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)
$$

- This is true only if X and Y are independent:

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Covariance

- Covariance measures the joint variablility of two RVs X and Y,

$$
\operatorname{Cov}(X, Y)=E([X-E(X)][Y-E(Y)])
$$

- With some algebra, you can show that

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)
$$

Covariance properties

If X, Y, W, and V be random variables and a, b, c, d be constants,

- $\operatorname{Cov}(X, a)=0$
- $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
- $\operatorname{Cov}(X+a, Y+b)=\operatorname{Cov}(X, Y)$

Covariance properties

- $\operatorname{Cov}(a X, b Y)=a b \operatorname{Cov}(X, Y)$
- $\operatorname{Cov}(a X+b Y, c W+d V)=a c \operatorname{Cov}(X, W)+a d \operatorname{Cov}(X, V)$

$$
+b c \operatorname{Cov}(Y, W)+b d \operatorname{Cov}(Y, V)
$$

- The above equation implies that

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
$$

- $\operatorname{Cov}(X, Y)=0$ iff X and Y are independent

Readings

- Chapter 12.1-12.2 of our textbook

Random vector

－The collection of multiple random variables
－Mean value \longrightarrow mean vector
－Variance \longrightarrow covariance matrix
－k－th moment \longrightarrow tensor of order k
－Fundamental building block in machine learning
－詳見應用多變量分析

Random function

－A random function occurs when the result of a random trial is a function，e．g．
－tomorrow＇s power generation curve by wind energy
－an image by an automatic vehicle
－random field
－詳見隨機過程，函數型資料分析

Others

- Random intervals (symbolic data analysis)
- Random graphs
- Refer to object-oriented data analysis

