Statistical inferencing

Part III

Review

One sample tests

Assume $X_1, ..., X_n \stackrel{iid}{\sim} f_X(x)$

- $f_X(x) = N(\mu, \sigma^2)$: <u>t-test</u>
- Wilcoxon signed-rank test

Two sample tests

- Paired data
 - normal: <u>paired t-test</u>
 - <u>Wilcoxon signed-rank test</u>
- Independent sample
 - normal: <u>two-sample t-tests</u>
 - Mann—Whitney U test

Goodness of fit tests

- Categorical variable:
 - Pearson's chi-squared test
 - <u>Chi-squared independence test</u>
- Continuous variable:
 - Kolmogorov-Smirnov test

Check model assumptions

- <u>Shapiro-Wilk test</u> for normality
- <u>Runs test</u> for iid

Agenda

- Duality between Hypothesis testing and confidence intervals
- Inferencing with MLE
- Resampling tests

Testing by confidence intervals

Example: one-sample t-test

Assume $X_1, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ and we are interested in testing $H_0: \mu = \mu_0$. The acceptance region of this test is

$$\begin{split} |\bar{X} - \mu_0| &\leq t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} \\ \Leftrightarrow \bar{X} - t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} &\leq \mu_0 \leq \bar{X} + t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} \end{split}$$

while the confidence interval for μ is

$$\bar{X} - t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} \le \mu \le \bar{X} + t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}$$

Hypothesis testing and confidence intervals

In fact, every confidence set corresponds to a test, and vice versa. Recall that an interval [a, b] is a confidence interval iff

$$P(\theta \in [a, b] | \theta = \theta) = 1 - \alpha$$

Thus, when $H_0: \theta = \theta_0$ is true, [a, b] becomes an acceptance region since

$$P(\theta_0 \in [a, b] | \theta = \theta_0) = 1 - \alpha$$

Inferencing with MLE

Likelihood ratio test

- If we are interesting in testing $H_0: \theta \in \Theta_0 \quad \forall s \quad H_A: \theta \in \Theta_0^c$
- The likelihood ratio test statistic is

$$\Lambda_n = \frac{\max_{\theta \in \Theta_0} L(\theta)}{\max_{\theta \in \Theta_0^c} L(\theta)}$$

• By Wilks' theorem we have

$$-2\log\left(\Lambda_n\right) \xrightarrow{d} \chi_Q^2$$

Most powerful test by <u>Neyman–Pearson lemma</u>

Wald test

- If we are interesting in testing $H_0: \theta = \theta_0 \quad \text{vs} \quad H_A: \theta \neq \theta_0$
- Let $\hat{\theta}$ be the MLE of θ , the Wald test statistics becomes

$$W_n = (\hat{\theta} - \theta_0)' I(\hat{\theta}) (\hat{\theta} - \theta_0) \xrightarrow{d} \chi_Q^2$$

where $I(\hat{\theta})$ is the fisher information of θ

<u>Score test</u>

- Let $\hat{\theta}_0$ be the MLE under null hypothesis and $U(\theta) = \frac{\partial \log L(\theta)}{\partial \theta}$
- The score test statistic is

$$S_n = U(\hat{\theta}_0)' I(\hat{\theta}_0)^{-1} U(\hat{\theta}_0) \xrightarrow{d} \chi_Q^2$$

• Score test is an approximation of LRT. It is almost most powerful when $\hat{\theta}_0$ is close enough to the true parameter θ

(My personal) suggestions

- The three tests are asymptotically equivalent as $n \to \infty$
- Use LRT whenever possible
- Wald test is a good choice from a machine learning perspective when n is large enough

Resampling tests

Violation of model assumptions

- Normality
 - CLT when n is large
 - nonparametric tests
 - estimate the null distribution by resampling
- Dependent data
 - estimate the null distribution by resampling

Bootstrapping

- Draw *B* samples with replacement under H_0
- Estimate the null distribution of a test statistics by the empirical distribution from the *B* bootstrap samples

Example: one sample t-test

Assume $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ and $H_0: \mu = \mu_0$. Note that we cannot draw bootstrap samples from X_i 's since H_0 may not be true. Instead, let $Z_i = X_i - \bar{X} + \mu_0$ and \tilde{Z}_i^b be the b-th bootstrap sample from Z_i . Then $t_b = \frac{\bar{Z}^b - \mu_0}{s_b/\sqrt{n}}$

can be used to estimate the null distribution of t statistics for $b = 1, \dots, B$

Example: two sample test

Block bootstrap

 For correlated data (e.g. time series), simple bootstrapping usually fails as it is not able to replicate the correlation in the data

Moving block bootstrap

Moving block bootstrap

Let $X_1, ..., X_T$ be a time series and $Y_j = (X_1, ..., X_\ell)$ be the j-th block of size ℓ for $j = 1, ..., T - \ell + 1$. Then, for the b-th bootstrap sample we draw $\tilde{Y}_1, ..., \tilde{Y}_m$ with replacement from Y_j with $T \approx m\ell$

• The block size ℓ has to be moderated large to mimic the correlation of X_1, \ldots, X_T and to ensure the independent property of the bootstrap sample \tilde{Y} . Usually, $\ell \propto T^{1/3}$

Readings

- Chapters 9, 11 of "All of Statistics"
- Chapter 13 of "Computational and Inferential Thinking"

Homework

Block bootstrapping for PM 2.5 Concentrations