
Statistical inferencing 

Part III



Review



One sample tests
Assume  

•                    : t-test 

• Wilcoxon signed-rank test

X1, …, Xn
iid∼ fX(x)

fX(x) = N(μ, σ2)

https://en.wikipedia.org/wiki/Student's_t-test#One-sample_t-test
https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test


Two sample tests
• Paired data 

• normal: paired t-test 

• Wilcoxon signed-rank test 

• Independent sample 

• normal: two-sample t-tests 

• Mann–Whitney U test

https://en.wikipedia.org/wiki/Student's_t-test#Dependent_t-test_for_paired_samples
https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
https://en.wikipedia.org/wiki/Student's_t-test#Independent_two-sample_t-test
https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test


Goodness of fit tests
• Categorical variable: 

• Pearson’s chi-squared test 

• Chi-squared independence test 

• Continuous variable: 

• Kolmogorov–Smirnov test

https://en.wikipedia.org/wiki/Pearson's_chi-squared_test#Test_for_fit_of_a_distribution
https://en.wikipedia.org/wiki/Pearson's_chi-squared_test#Testing_for_statistical_independence
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test


Check model assumptions
• Shapiro–Wilk test for normality 

• Runs test for iid

https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test
https://en.wikipedia.org/wiki/Wald%E2%80%93Wolfowitz_runs_test


Agenda
• Duality between Hypothesis testing and 

confidence intervals 

• Inferencing with MLE 

• Resampling tests



Testing by 
confidence intervals



Example: one-sample t-test

Assume                            and we are interested 
in testing               . The acceptance region of this 
test is 
 
 
 
 
 
while the confidence interval for    is

X1, …, Xn
iid∼ N (μ, σ2)

H0 : μ = μ0

| X̄ − μ0 | ≤ tn−1,α/2
s

n

⇔ X̄ − tn−1,α/2
s

n
≤ μ0 ≤ X̄ + tn−1,α/2

s

n

μ

X̄ − tn−1,α/2
s

n
≤ μ ≤ X̄ + tn−1,α/2

s

n



Hypothesis testing and 
confidence intervals

In fact, every confidence set corresponds to a test, 
and vice versa. Recall that an interval         is a 
confidence interval iff 
 
 
Thus, when                is true,         becomes an 
acceptance region since

[a, b]

P(θ ∈ [a, b] |θ = θ) = 1 − α

H0 : θ = θ0 [a, b]

P(θ0 ∈ [a, b] |θ = θ0) = 1 − α



Inferencing with MLE



Likelihood ratio test
• If we are interesting in testing 

• The likelihood ratio test statistic is 

• By Wilks’ theorem we have 

• Most powerful test by Neyman–Pearson lemma

H0 : θ ∈ Θ0 vs HA : θ ∈ Θc
0

Λn =
maxθ∈Θ0

L(θ)
maxθ∈Θc

0
L(θ)

−2 log (Λn) d→ χ2
Q

https://en.wikipedia.org/wiki/Likelihood-ratio_test
https://en.wikipedia.org/wiki/Wilks'_theorem
https://en.wikipedia.org/wiki/Neyman%E2%80%93Pearson_lemma


Wald test
• If we are interesting in testing 

• Let    be the MLE of   , the Wald test statistics 
becomes  
 
 
where       is the fisher information of  

H0 : θ = θ0 vs HA : θ ≠ θ0

̂θ θ

Wn = ( ̂θ − θ0)′�I( ̂θ)( ̂θ − θ0)
d→ χ2

Q

I( ̂θ) θ

https://en.wikipedia.org/wiki/Wald_test
https://en.wikipedia.org/wiki/Fisher_information


Score test
• Let     be the MLE under null hypothesis and 

• The score test statistic is 

• Score test is an approximation of LRT. It is 
almost most powerful when     is close enough to 
the true parameter  

̂θ0

U(θ) =
∂ log L(θ)

∂θ

Sn = U( ̂θ0)′�I( ̂θ0)−1U( ̂θ0)
d→ χ2

Q

̂θ0
θ

https://en.wikipedia.org/wiki/Score_test


(My personal) suggestions
• The three tests are asymptotically equivalent as 

• Use LRT whenever possible 

• Wald test is a good choice from a machine 
learning perspective when n is large enough

n → ∞



Resampling tests

https://en.wikipedia.org/wiki/Resampling_(statistics)


Violation of model assumptions

• Normality 

• CLT when n is large 

• nonparametric tests 

• estimate the null distribution by resampling 

• Dependent data 

• estimate the null distribution by resampling



Bootstrapping
• Draw    samples with replacement under 

• Estimate the null distribution of a test statistics 
by the empirical distribution from the    
bootstrap samples 

B H0

B



Example: one sample t-test

Assume                            and               . Note 
that we cannot draw bootstrap samples from    's 
since     may not be true. Instead, let 
and     be the b-th bootstrap sample from    . Then 
 
 
 
can be used to estimate the null distribution of t 
statistics for 

X1, …, Xn
iid∼ N (μ, σ2) H0 : μ = μ0

Xi
H0 Zi = Xi − X̄ + μ0

Z̃b
i Zi

tb =
Z̄b − μ0

sb/ n

b = 1,⋯, B



Example: two sample test



Block bootstrap
• For correlated data (e.g. time series), simple 

bootstrapping usually fails as it is not able to 
replicate the correlation in the data



Moving block bootstrap



Moving block bootstrap
Let              be a time series and                     be 
the j-th block of size    for                        . Then, 
for the b-th bootstrap sample we draw             
with replacement from     with           

• The block size    has to be moderated large to 
mimic the correlation of              and to ensure 
the independent property of the bootstrap 
sample   . Usually, 

X1, …, XT Yj = (X1, ⋯, Xℓ)

ℓ

j = 1,⋯, T − ℓ + 1

Yj

Ỹ1, ⋯, Ỹm
T ≈ mℓ

ℓ

X1, …, XT

Ỹ ℓ ∝ T1/3



Readings
• Chapters 9, 11 of “All of Statistics” 

• Chapter 13 of “Computational and Inferential 
Thinking”



Homework
• Block bootstrapping for PM 2.5 Concentrations


