Statistical inferencing

Part Il



Review



One sample tests

Assume X, ..., X, < f(x)

o f3(x) = N(u,0%): t—test

* Wilcoxon signed-rank test



https://en.wikipedia.org/wiki/Student's_t-test#One-sample_t-test
https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test

Two sample tests

 Paired data

* normal: paired t—test

* Wilcoxon signed-rank test

* Independent sample

 normal: two—sample t-tests

« Mann—Whitnhey U test



https://en.wikipedia.org/wiki/Student's_t-test#Dependent_t-test_for_paired_samples
https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
https://en.wikipedia.org/wiki/Student's_t-test#Independent_two-sample_t-test
https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test

Goodness of fit tests

» Categorical variable:

e Pearson’s chi-squared test

» Chi—squared independence test

« Continuous variable:

« Kolmogorov—Smirnov test



https://en.wikipedia.org/wiki/Pearson's_chi-squared_test#Test_for_fit_of_a_distribution
https://en.wikipedia.org/wiki/Pearson's_chi-squared_test#Testing_for_statistical_independence
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test

Check model assumptions

« Shapiro—Wilk test for normality

 Runs test for iid



https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test
https://en.wikipedia.org/wiki/Wald%E2%80%93Wolfowitz_runs_test

Agenda

* Duality between Hypothesis testing and
confidence intervals

* Inferencing with ML

 Resampling tests



Testing by
confidence intervals



Example: one—sample t-test
Assume X;,...,X, %N<//t,62) and we are interested
in testing Hy : p = uy. The acceptance region of this
test is
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Hypothesis testing and
confidence intervals

In fact, every confidence set corresponds to a test,
and vice versa. Recall that an interval [a, b] is a
confidence interval iff

PO €E[ab]l|l0=0)=1—-a

Thus, when H,: 0 =6, is true, [a,b] becomes an
acceptance region since



Inferencing with MLE



Likelihood ratio test

If we are interesting in testing
H,:0€0, vs H,:0¢€0,

The likelihood ratio test statistic is

A = MaXgee, L(O)

maXyeg; L(0)

By Wilks’ theorem we have

—2log (A,) —d>;(é

Most powerful test by Neyman—Pearson lemma



https://en.wikipedia.org/wiki/Likelihood-ratio_test
https://en.wikipedia.org/wiki/Wilks'_theorem
https://en.wikipedia.org/wiki/Neyman%E2%80%93Pearson_lemma

Wald test

» |f we are interesting in testing

« Let 9 be the MLE of 9, the Wald test statistics
becomes

A A A d
W =(©0-6)10)0—-4H)— ;(é

where 1(0) is the fisher information of 6



https://en.wikipedia.org/wiki/Wald_test
https://en.wikipedia.org/wiki/Fisher_information

Score test

+ Let §, be the MLE under null hypothesis and
dlog L(0)
060

U(f) =

* The score test statistic is

~ A1y A d
S, = U0p)'1(0p)"' U0y = x5

« Score test is an approximation of LRT. It is
almost most powerful when d, is close enough to
the true parameter @


https://en.wikipedia.org/wiki/Score_test

(My personal) suggestions

* The three tests are asymptotically equivalent as

n — oo
 Use LRT whenever possible

» Wald test is a good choice from a machine
learning perspective when n is large enough



Resampling tests


https://en.wikipedia.org/wiki/Resampling_(statistics)

Violation of model assumptions

* Normality
« CLT when n is large
* nonparametric tests

» estimate the null distribution by resampling

* Dependent data

» estimate the null distribution by resampling



Bootstrapping

» Draw B samples with replacement under H,

 Estimate the null distribution of a test statistics
by the empirical distribution from the B
bootstrap samples



Example: one sample t-test

Assume X,,..., X, N (u,6%) and H, : u = . Note

that we cannot draw bootstrap samples from X:'s
since H, may not be true. Instead, let Z = X, — X + 4,
and Z? be the b-th bootstrap sample from Z.. Then

Zb
I =
Sp / \/_

can be used to estimate the null distribution of t
statistics for b=1,---,B




Example: two sample test



Block bootstrap

» For correlated data (e.g. time series), simple
bootstrapping usually fails as it is not able to
replicate the correlation in the data




Moving block bootstrap
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Moving block bootstrap

Let X;,...,X; be a time series and Y; = (X}, ---,X,) be
the j—th block of size # for j=1,---, T— ¢+ 1. Then,
for the b—th bootstrap sample we draw Y;, ---, Y

with replacement from Y, with T'~ m&

* The block size ¢ has to be moderated large to
mimic the correlation of X, ..., X, and to ensure
the independent property of the bootstrap
sample Y. Usually, # « T



Readings
» Chapters 9, 11 of “All of Statistics”

» Chapter 13 of “Computational and Inferential
Thinking”



Homework

* Block bootstrapping for PM 2.5 Concentrations



