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Problem definition



Classification

* Find an appropriate decision function f(x) to
predict one or more categorical response
variables y

* binary
e muticlass

 multilabel



Misclassification rates
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* The misclassification rate can be defined as
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Misclassification rates

 |Intuitively, one may learn an decision
function f(x) that minimizes misclassification
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* Unfortunately, loss function composited by step
functions are difficult to optimize.
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Probabilistic interpretation
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(Generative vs
discriminative



GGenerative models

* From Bayes theorem we have
PX|Y) X P(Y)

P(X)
x P(X|Y) x P(Y)

P(Y|X) =

* The decision function can be specified as

f(X) = arg max P(Y | X)
Y
= arg max P(X|Y) X P(Y)
Y



GGenerative models

The prior probability P(Y) can be assigned in priori
or be estimated empirically by ny/N

Probabilistic model assumptions on P(X|Y):

. N(ﬂy,Z)Z linear discriminant analysis (LDA)

. N(py, y> quadratic discriminant analysis (QDA)
* Naive bayes

* Nonparametric estimation: k—nearest neighbors



Discriminative models

Learns the decision boundaries directly

Less model assumption
Loss function formulation

More preferable in machine learning society



Logistic regression

o« Softmax function:

CXp [ﬁo XTﬁ]
1 + exp [,BO + xTﬂ]

o(X) =

e Decision function:

f(x) =1 <a(x) > %)

» Decision boundary: {x . 6(X) =_}



Multiclass logistic regression

 Assume that ye {1,2,---,c}

* In multiclass logistic regression, we assume that

y Categorical (aj(x)>

with softmax function
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Multiclass logistic regression

 The likelihood function becomes
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Multiclass logistic regression

* The log-likelihood becomes

N

£ = Z yl-(k) log 6;(x;)
i=1 L k=1

C
+ =) yPlogayx) is also called cross entropy
k=1

» What will happen if c=2? (homework)
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Metrics



Binary classification

Confusion matrix

True positives (TP) False Negatives (FN)

False Positives (FP) True Negatives (TN)

Misclassification rate = (FN + FP) / N
Sensitivity (recall) = TP / (TP+FN)

Precision = TP / (TP + FP)



» Specificity = TN / (TN+FP)
Predicted class
P N

False
Negatives

True
Positives
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* Fl-score is a single metric that combines both
precision and recall via their harmonic mean



Area under ROC
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Multiclass classification

Confusion matnx
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* precision, recall and F1-score

* micro: calculate metrics globally by counting
the total number of times each class was
correctly predicted and incorrectly predicted

* macro: calculate metrics for each "class”
independently, and find their unweighted mean.
This does not take label imbalance into
account.



Representations

Linear function g, +x'g,

Trees (e.g. random forest, gradient boosting
trees, etc)

Kernel tricks
Deep neural networks

etc.



Feature engineering

* Sometimes we may need to transform the raw
data (e.g. images) to some useful features (e.g.
breast cancer dataset)

* In the past decades the transformations are
carried out by human intelligent

* On of the most appealing advantage of deep
learning (especially CNN) is that such
transformations can be determined automatically



Readings

Chapter 17 of “Computational and Inferential
Thinking”

Classification Metrics

Chapter 4 of “Machine Learning with
TensorFlow”

Tensorflow playground



https://www.inferentialthinking.com/chapters/17/Classification
https://apple.github.io/turicreate/docs/userguide/evaluation/classification.html
https://livebook.manning.com/#!/book/machine-learning-with-tensorflow/chapter-4
https://playground.tensorflow.org/

Homework

1. Implement multiclass logistic regression on your
own by (stochastic) gradient descent and apply
it to the wine dataset

2. Compare your result with that obtained by
sklearn.linear_model.LogisticRegression with a
very large C and multi_class="multinomial’

3. Evaluate the classification performances by

micro/macro precisions, recalls, and F1 scores
by exoss - Ui O )


https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_wine.html#sklearn.datasets.load_wine

