Classification (part 2)

Multiclass logistic regression

Recap: logistic function

Represent $p(\mathbf{x}) = P(Y = 1 | \mathbf{X} = \mathbf{x})$ by sigmoid function

$$\sigma(t) = \frac{1}{1+e^{-t}}.$$

where t is an arbitrary function of \mathbf{x} (e.g. the output of a deep neural network)

Recap: cross-entropy loss

The cross–entropy loss is a popular loss function for binary classification:

Recap: decision cutoff

Let $\hat{p}(\mathbf{x})$ be an estimator of $p(\mathbf{x})$, we can classify **X** by the following classification rule:

$$h(\mathbf{X}) = \begin{cases} 1, & \text{if } \hat{p}(\mathbf{X}) \ge \delta \\ 0, & \text{if } \hat{p}(\mathbf{X}) < \delta \end{cases}$$

- The hyperparameter $\delta \in (0,1)$ is called a classification threshold or a decision cutoff
- δ is often selected by optimizing an appropriate metric

Recap: metrics for a binary classifier

L196

- Confusion matrix
- Accuracy
- Sensitivity (recall)
- Precision
- Specificity
- ROC curve and AUC

Agenda

- Multiclass logistic regression
 - sigmoid function \longrightarrow softmax functions
 - cross–enropy loss → categorical cross– entropy loss
- Evaluating multiclass classifiers

Multiclass logistic regression

Categorical model

Recall that in a multiclass classification problem $y \in \{1, 2, ..., K\}$ for $K \ge 2$. Here our idea is to model $p_k(\mathbf{x}) = P(Y = k | \mathbf{X} = \mathbf{x})$ and predict the value of Y by the values of $p_k(\mathbf{x})$.

1. Since $p_k(\mathbf{x})$ is a conditional probability, we need $0 \le p_k(\mathbf{x}) \le 1$.

2. We also need
$$\sum_{k=1}^{K} p_k(\mathbf{x}) = 1$$
.

(2)

Softmax functions

We may satisfy the above two constraints by modeling $p_k(\mathbf{x})$ as softmax functions:

$$p_k(\mathbf{x}) = \frac{\exp\left[m_k(\mathbf{x})\right]}{\sum_{j=1}^{K} \exp\left[m_j(\mathbf{x})\right]}$$

where $m_j(\mathbf{x})$ is an arbitrary function of \mathbf{x} (e.g. the output of a neural network), often denoted as $m_j(\mathbf{x}; \boldsymbol{\theta}_j)$.

Implementation details

Exponential functions grow very fast, and thus $e^{m_j(\mathbf{x})}$ may easily overflow. Fortunately, we have

$$\frac{\exp\left[m_{k}(\mathbf{x})\right]}{\sum_{j=1}^{K} \exp\left[m_{j}(\mathbf{x})\right]} = \frac{C \cdot \exp\left[m_{k}(\mathbf{x})\right]}{C \cdot \sum_{j=1}^{K} \exp\left[m_{j}(\mathbf{x})\right]}$$
$$= \frac{\exp\left[m_{k}(\mathbf{x}) + \tilde{C}\right]}{\sum_{j=1}^{K} \exp\left[m_{j}(\mathbf{x}) + \tilde{C}\right]}$$

Thus we can avoid numerical overflow by using $\tilde{C} = -\max\left\{m_j(\mathbf{x})\right\}.$

One-hot encoding

Let $\tilde{\mathbf{y}} = [y^{(1)}, y^{(2)}, ..., y^{(K)}]^{\top}$ be the one-hot encoding of $y \in \{1, 2, \dots, K\}$, where

$$y^{(k)} \triangleq I(y = k) = \begin{cases} 1, & \text{if } y = k \\ 0, & \text{otherwise} \end{cases}$$
$$\boxed{9, -6} = 1 + \frac{1}{2} + \frac{1}{$$

(3)

Categorical cross-entropy loss

The categorical cross–entropy loss for multiclass classification is defined as

$$L\left(\tilde{\mathbf{y}}, \hat{\mathbf{p}}\right) = -\sum_{k=1}^{K} \tilde{y}^{(k)} \log \hat{p}_k,$$

where $\hat{\mathbf{p}} = \left[\hat{p}_1, \hat{p}_2, \dots, \hat{p}_K\right]^{\mathsf{T}}.$

When K = 2

When K = 2, equation (3) can be written as

$$L(y, \hat{\mathbf{p}}) = -I(y = 1) \cdot \hat{p}_1 - I(y = 2) \cdot \hat{p}_2$$

= $-I(y = 1) \cdot \hat{p}_1 - I(y = 0) \cdot (1 - \hat{p}_1)$
= $-y \cdot \hat{p} - (1 - y) \cdot (1 - \hat{p})$
 $\hat{p}_1 + \hat{p}_2 = 1$

Multiclass logistic regression

By combining equations (2) and (3), multiclass logistic regression estimates $p_k(\mathbf{x})$ for k = 1, 2, ..., K by

$$\min_{\boldsymbol{\theta}_1,\cdots,\boldsymbol{\theta}_K} - \sum_{i=1}^n \sum_{k=1}^K \tilde{y}_i^{(k)} \log \hat{p}_k(\mathbf{x}_i)$$

where $\hat{p}_k(\mathbf{x}_i)$'s are defined in equation (2).

Multiclass logistic regression by MLE

L196

- Assume $Y_i | \mathbf{X}_i = \mathbf{x}_i$ is independently sampled from categorical distribution with parameters $\mathbf{p}(\mathbf{x}_i)$.
- The likelihood function becomes

$$\prod_{i=1}^{n} \left[\prod_{k=1}^{K} p_k(\mathbf{x}_i) \right]^{y_i^{(k)}}$$

• The log-likelihood becomes

$$\mathscr{C} = \sum_{i=1}^{n} \left[\sum_{k=1}^{K} y_i^{(k)} \log p_k(\mathbf{x}_i) \right]$$

Classification rule

In multiclass logistic regression, we often predict *Y* by

$$\hat{Y} = \arg \max \hat{P}(Y = k | \mathbf{X} = \mathbf{x})$$

$$_{k=1,2,\ldots,K}$$

$$= \arg \max \hat{p}_{k}(\mathbf{x})$$

$$_{k=1,2,\ldots,K}$$

Multiclass logistic regression in TensorFlow

|

196

 When the response variables are already one-hot encoded, specify the loss function as tf.keras.losses.CategoricalCrossentropy

0966206582

 When the response variables are numeric or categorical (e.g. strings), specify the loss function as tf.keras.losses.SparseCategoricalCrossentropy

Example: linear multiclass logistic regression

L196

Evaluating multiclass classifiers

Confusion matrix

		True/Actual		
		Cat (🐷)	Fish (①)	Hen (🐴)
Predicted	Cat (🐷)	4	6	3
	Fish (1	2	0
	Hen (🐴)	1	2	6

https://towardsdatascience.com/multi-class-metrics-made-simple-part-i-precision-and-recall-9250280bddc2

Accuracy

Accuracy = $\frac{\text{trace of confusion matrix}}{\text{sample size}}$

Precisions and recalls

Precisions and recalls are defined class-by-class:

		True/Actual		
		Cat (🐷)	Fish (仉)	Hen (🐴)
Predicted	Cat (🐷)	4	6	3
	Fish (1	2	0
	Hen (🐴)	1	2	6

https://towardsdatascience.com/multi-class-metrics-made-simple-part-i-precision-and-recall-9250280bddc2

			True/Actual	# L196
		Cat (🐷)	Fish (仉)	Hen (🐴)
Predicted	Cat (🐷)	4	6	3
	Fish (1	2	0
	Hen (🐴)	1	2	6
Predicted	Cat (🐷)	4	6	3
	Fish (1	2	0
	Hen (🐴)	1	2	6

https://towardsdatascience.com/multi-class-metrics-made-simple-part-i-precision-and-recall-9250280bddc2

Combining per-class scores

- macro-score = arithmetic mean of the per-class scores
- weighted-score = weighted average (by number of samples from that class) of the per-class scores
- micro-score: let micro-TP = sum of per-class
 TPs, ...

Summary

- We extend logistic regression to multiclass classification problems
 - sigmoid function \longrightarrow softmax functions
 - cross–enropy loss → categorical cross– entropy loss
 - decision rule

- Metrics for multiclass classifiers:
 - accuracy
 - per–class precisions and recalls
 - micro, macro, and weighted scores

Readings

- Video from <u>機器學習基石</u>
- Metrics for multiclass classification