Spin

2018/4/30

Orbital magnetic dipole moment

- for an electron moving in a circular orbit

$$
i=\frac{e}{T}=\frac{e v}{2 \pi r}
$$

- in classical electrodynamics, it produces a magnetic dipole moment

$$
\mu_{l}=i A=\frac{e v}{2 \pi r} \pi r^{2}=\frac{e v r}{2}
$$

V

Bohr magneton

- The electron also has an angular momentum

$$
L=m v r
$$

- The dipole moment and L are related to each other

$$
\frac{\mu}{L}=\frac{e v r / 2}{m v r}=\frac{e}{2 m}=\frac{g_{l} \mu_{b}}{\hbar}
$$

- A constant Bohr magneton is defined

$$
\mu_{b}=\frac{e \hbar}{2 m}=0.927 \times 10^{-23} \mathrm{~A} \mathrm{~m}^{2}
$$

Gyromagnetic ratio

- The constant gı is called gyromagnetc ratio
- For orbital motion $g_{l}=1$
- The magnetic dipole moment can be written as

$$
\mu=-\frac{g_{l} \mu_{b}}{\hbar} L
$$

- The dipole moment and L are in antiparallel because of negative charge

Quantum results

- for angular momentum eigenstates

$$
L=l(l+1) \hbar \quad L_{z}=m \hbar
$$

- The dipole moment has

$$
\begin{gathered}
\mu_{l}=\sqrt{l(l+1)} g_{l} \mu_{b} \\
\mu_{l, z}=-m g_{l} \mu_{b}
\end{gathered}
$$

Energy in a magnetic field

- A magnetic dipole moment experiences a torque in a magnetic field

$$
\bar{\tau}=\bar{\mu}_{l} \times \bar{B}
$$

- The force is conservative, and gives a potential energy

$$
\Delta E=-\vec{\mu}_{l} \cdot \stackrel{\rightharpoonup}{B}
$$

precession

- The torque produces a change in angular momentum

$$
\begin{gathered}
\tau=\mu_{l} B \sin \theta \\
\frac{\Delta L}{\Delta t}=\tau=\mu_{l} B \sin \theta=\frac{g_{l} \mu_{b}}{\hbar} L B \sin \theta \\
\frac{\Delta L}{\Delta t}=\frac{g_{l} \mu_{b}}{\hbar} B L_{\perp}
\end{gathered}
$$

- Precession angle is

$$
\Delta \phi=\frac{\Delta L}{L_{\perp}}=\frac{g_{\iota} \mu_{b}}{\hbar} B \Delta t
$$

$$
\Omega=\frac{\Delta \phi}{\Delta t}=\frac{g_{l} \mu_{b}}{\hbar} B
$$

Stern-Gerlach experiment

- A stream of atoms moving from the right passes between the asymmetric poles of a magnet. Particles with different values of μ_{z} are deflected in different directions. The final position of the atom determines its μ_{z}

$$
\vec{\mu} \propto-\vec{S} \quad \gamma \text { is gyromagnetic ratio }
$$

spin I/2 system

- A particle may have an intrinsic angular momentum called spin
- Electrons, protons, and neutrons are all examples of spin-I/2 particles
- If one measure the z-component $\mathrm{S}_{\mathrm{z}}\left(\right.$ or S_{x}, S_{y}) of the spin angular momentum for one of these particles, he gets

$$
S_{z}= \pm \frac{\hbar}{2}
$$

intrinsic magnetic moment

- electron has an intrinsic magnetic dipole moment by virtue of its spin

$$
\mu=-\frac{g_{s} \mu_{b}}{\hbar} \mathbf{S}
$$

- gyromagnetic ratio, $g_{s}=2$
- Hamiltonian

ground state

$$
H=-\mu \cdot \mathbf{B}=-\frac{g_{s} \mu_{b}}{\hbar} \mathbf{S} \cdot \mathbf{B}
$$

Spin I/2 system

- for angular momentum $S=1 / 2$, there are 2 eigenstates

$$
s=\frac{1}{2} \quad m_{s}= \pm \frac{1}{2}
$$

- we can write the states

$$
\begin{gathered}
S^{2} \chi_{ \pm}=s(s+1) \hbar^{2} \\
S_{z} \chi_{ \pm}= \pm \frac{1}{2} \hbar
\end{gathered}
$$

commutation relations

- mutual commutation relations for L

$$
\begin{aligned}
{\left[L_{x}, L_{y}\right] } & =\left[y p_{z}-z p_{y}, z p_{x}-x p_{z}\right]=\left[y p_{z}, z p_{x}\right]+\left[z p_{y}, x p_{z}\right] \\
& =-i \hbar y p_{x}+i \hbar p_{y} x=i \hbar L_{z} \\
{\left[L_{y}, L_{z}\right] } & =i \hbar L_{x} \\
{\left[L_{z}, L_{x}\right] } & =i \hbar L_{y}
\end{aligned}
$$

- mutual commutation relations for S

$$
\begin{aligned}
& {\left[S_{x}, S_{y}\right]=i \hbar S_{z}} \\
& {\left[S_{y}, S_{z}\right]=i \hbar S_{x}} \\
& {\left[S_{z}, S_{x}\right]=i \hbar S_{y}}
\end{aligned}
$$

raising and lowering operators

- to show the structure, we define $S_{ \pm}=S_{x} \pm i S_{y}$

$$
\begin{aligned}
{\left[S^{2}, S_{ \pm}\right] } & =\left[S^{2}, S_{x}\right] \pm i\left[S^{2}, S_{y}\right]=0 \\
{\left[S_{z}, S_{ \pm}\right] } & =\left[S_{z}, S_{x}\right] \pm i\left[S_{z}, S_{y}\right] \\
& =i \hbar S_{y} \pm \hbar S_{x}= \pm \hbar S_{ \pm}
\end{aligned}
$$

- total angular momentum does not change

$$
\begin{aligned}
S^{2}\left(S_{+} \chi_{ \pm}\right) & =\left(S^{2} S_{+}\right) \chi_{ \pm} \\
& =\left(S_{+} S^{2}\right) \chi_{ \pm}+\left[S^{2}, S_{+}\right] \chi_{ \pm} \\
& =s(s+1) \hbar^{2}\left(S_{+} \chi_{ \pm}\right)
\end{aligned}
$$

meaning of S_{+}

- z-component

$$
\begin{aligned}
S_{z}\left(S_{+} \chi_{-}\right) & =\left(S_{z} S_{+}\right) \chi_{-} \\
& =\left(S_{+} S_{z}\right) \chi_{-}+\left[S_{z}, S_{+}\right] \chi_{-} \\
& =-\frac{1}{2} \hbar\left(S_{+} \chi_{-}\right)+\hbar\left(S_{+} \chi_{-}\right)=\frac{1}{2} \hbar\left(S_{+} \chi_{-}\right)
\end{aligned}
$$

$$
\begin{aligned}
S_{z}\left(S_{+} \chi_{+}\right) & =\left(S_{z} S_{+}\right) \chi_{+} \\
& =\left(S_{+} S_{z}\right) \chi_{+}+\left[S_{z}, S_{+}\right] \chi_{+} \\
& =\frac{1}{2} \hbar\left(S_{+} \chi_{+}\right)+\hbar\left(S_{+} \chi_{+}\right)=\frac{3}{2} \hbar\left(S_{+} \chi_{+}\right)
\end{aligned}
$$

$$
S_{+} \chi_{+}=0
$$

- because $\left\langle S_{z}^{2}\right\rangle$ must be smaller than $\left\langle S^{2}\right\rangle$

meaning of S-

- z-component

$$
\begin{array}{rlrl}
S_{z}\left(S_{-} \chi_{-}\right) & =\left(S_{z} S_{-}\right) \chi_{-} & & S_{-} \chi_{-}=0 \\
& =\left(S_{-} S_{z}\right) \chi_{-}+\left[S_{z}, S_{-}\right] \chi_{-} & \\
& =-\frac{1}{2} \hbar\left(S_{-} \chi_{-}\right)-\hbar\left(S_{-} \chi_{-}\right)=-\frac{3}{2} \hbar\left(S_{-} \chi_{-}\right) & \\
S_{z}\left(S_{-} \chi_{+}\right) & =\left(S_{z} S_{-}\right) \chi_{+} & \\
& =\left(S_{-} S_{z}\right) \chi_{+}+\left[S_{z}, S_{-}\right] \chi_{+} & S_{-} \chi_{+}=C_{-} \chi_{-} \\
& =\frac{1}{2} \hbar\left(S_{-} \chi_{+}\right)-\hbar\left(S_{-} \chi_{+}\right)=-\frac{1}{2} \hbar\left(S_{-} \chi_{+}\right) &
\end{array}
$$

eigenstate: spinor

- spinor state(we cannot find spatial functions for them)

$$
\chi_{+}=\binom{1}{0} \quad \chi_{-}=\binom{0}{1}
$$

- any spinor state(normalized)

$$
\begin{gathered}
\chi=\binom{\alpha}{\beta}=\alpha \chi_{+}+\beta \chi_{-} \\
\substack{=\langle\chi \mid \chi\rangle=\left(\begin{array}{ll}
\alpha^{*} & \beta^{*}
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\beta
\end{array}\right)=|\alpha|^{2}+|\beta|^{2} \\
\uparrow}
\end{gathered}
$$

Dirac notation

Operators

- Because of the properties, we can write the operators

$$
\begin{array}{cc}
S^{2}=\left(\begin{array}{cc}
\frac{3}{4} \hbar & 0 \\
0 & \frac{3}{4} \hbar
\end{array}\right)=\frac{3}{4} \hbar\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) & S_{z}=\left(\begin{array}{cc}
\frac{1}{2} \hbar & 0 \\
0 & -\frac{1}{2} \hbar
\end{array}\right) \\
S_{+}=C_{+}\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right) & S_{-}=C_{-}\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right)
\end{array}
$$

$$
S_{z}=\left(\begin{array}{cc}
\frac{1}{2} \hbar & 0 \\
0 & -\frac{1}{2} \hbar
\end{array}\right)=\frac{1}{2} \hbar\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Sx and Sy

$$
S_{x}=\frac{1}{2}\left(S_{+}+S_{-}\right)=\frac{1}{2}\left(\begin{array}{cc}
0 & C_{+} \\
C_{-} & 0
\end{array}\right) \quad S_{x}=\frac{1}{2 i}\left(S_{+}-S_{-}\right)=\frac{1}{2 i}\left(\begin{array}{cc}
0 & C_{+} \\
-C_{-} & 0
\end{array}\right)
$$

- The hermicitivity of Sx and Sy gives

$$
C_{+}=C_{-}^{*}
$$

- We choose C's are real. Notice that the eigenvalues of Sx and Sy are $\pm \frac{1}{2} \hbar$

$$
C_{+}=C_{-}=\hbar \quad S_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad S_{x}=\frac{1}{2} \hbar\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

Pauli matrices

- Hermitian operators in 2 level systems $\mathbf{S}=\frac{1}{2} \hbar \sigma$

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Commutation relations

$$
\begin{array}{cl}
{\left[\sigma_{x}, \sigma_{y}\right]=2 i \sigma_{z}} & {\left[S_{x}, S_{y}\right]=i \hbar \delta_{z}} \\
\sigma_{x}^{2}=\sigma_{y}^{2}=\sigma_{z}^{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=1 &
\end{array}
$$

- They are anti-commute

$$
\left\{\sigma_{a}, \sigma_{b}\right\}=2 \delta_{a b}
$$

eigenstates of S_{x}

- To find the eigenstates for $S_{x}=\frac{1}{2} \hbar\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- The eigenequation $\quad\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{u}{v}=\lambda\binom{u}{v}$
- The eigenevalue

$$
\lambda^{2}-1=0 \quad \lambda= \pm 1
$$

$$
\frac{1}{\sqrt{2}}\binom{1}{1} \quad \frac{1}{\sqrt{2}}\binom{1}{-1}
$$

Bloch sphere

eigenstates of Sz

$$
\begin{aligned}
& \left|z_{+}\right\rangle=\binom{1}{0} \\
& \left|z_{-}\right\rangle=\binom{0}{1}
\end{aligned}
$$

eigenstates of $S x$

$$
\begin{aligned}
& \left|x_{+}\right\rangle=\frac{1}{\sqrt{2}}\left|z_{+}\right\rangle+\frac{1}{\sqrt{2}}\left|z_{-}\right\rangle \\
& \left|x_{-}\right\rangle=\frac{1}{\sqrt{2}}\left|z_{+}\right\rangle-\frac{1}{\sqrt{2}}\left|z_{-}\right\rangle
\end{aligned}
$$

Bloch sphere

some eigenstates

- To find the eigenstates for

$$
S_{\theta}=S_{z} \cos \theta+S_{x} \sin \theta=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
$$

- The eigenequation

$$
\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)\binom{u}{v}=\lambda\binom{u}{v}
$$

- The eigenevalue $\lambda^{2}-1=0 \quad \lambda= \pm 1$
- for $\quad \lambda=1 \quad \cos \theta u+\sin \theta v=u$

$$
\left|\theta_{+}\right\rangle=\binom{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}}=\cos \frac{\theta}{2}\left|z_{+}\right\rangle+\sin \frac{\theta}{2}\left|z_{-}\right\rangle \quad\left|\theta_{-}\right\rangle=\binom{\sin \frac{\theta}{2}}{-\cos \frac{\theta}{2}}=\sin \frac{\theta}{2}\left|z_{+}\right\rangle-\cos \frac{\theta}{2}\left|z_{-}\right\rangle
$$

rotation in θ

- Suppose we choose a
 direction in the xz-plane that is inclined at an angle θ from the z-axis. Then the amplitude vectors

$$
\begin{aligned}
& \left|\theta_{+}\right\rangle=\cos \frac{\theta}{2}\left|z_{+}\right\rangle+\sin \frac{\theta}{2}\left|z_{-}\right\rangle \\
& \left|\theta_{-}\right\rangle=\sin \frac{\theta}{2}\left|z_{+}\right\rangle-\cos \frac{\theta}{2}\left|z_{-}\right\rangle
\end{aligned}
$$

more eigenstates

- To find the eigenstates for

$$
S_{\phi}=S_{x} \cos \phi+S_{y} \sin \phi=\left(\begin{array}{cc}
0 & e^{-i \phi} \\
e^{i \phi} & 0
\end{array}\right)
$$

- The eigenequation

$$
\left(\begin{array}{cc}
0 & e^{-i \phi} \\
e^{i \phi} & 0
\end{array}\right)\binom{u}{v}=\lambda\binom{u}{v}
$$

- The eigenevalue

$$
\lambda^{2}-1=0 \quad \lambda= \pm 1
$$

- for $\lambda=1 \quad u=e^{-i \phi} v$ $\lambda=-1 \quad u=-e^{-i \phi} v$

$$
\left|\phi_{+}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{e^{i \phi}} \quad\left|\phi_{-}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{-e^{-i \phi}}
$$

rotation in φ

eigenstates of S_{ϕ}

$$
\begin{aligned}
& \left|\phi_{+}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{e^{i \phi}} \\
& \left|\phi_{-}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{-e^{i \phi}}
\end{aligned}
$$

General case

- Any rotation in θ and φ can be shown that
$\left|\theta, \phi_{+}\right\rangle=\binom{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2} e^{i \phi}}$
$\left|\theta, \phi_{-}\right\rangle=\binom{\sin \frac{\theta}{2}}{-\cos \frac{\theta}{2} e^{-i \phi}}$

are eigenstates of

$$
S_{\theta, \phi}=S_{x} \sin \theta \cos \phi+S_{y} \sin \theta \sin \phi+S_{x} \cos \theta=\mathbf{n}_{\theta, \phi} \cdot \mathbf{S}
$$

expectation values

$$
\begin{aligned}
\left\langle S_{x}\right\rangle & =\langle\chi| S_{x}|\chi\rangle=\frac{1}{2} \hbar\left(\begin{array}{ll}
\alpha^{*} & \beta^{*}
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\alpha}{\beta} \\
& =\frac{1}{2} \hbar\left(\alpha^{*} \beta+\beta^{*} \alpha\right) \\
\left\langle S_{y}\right\rangle & =\langle\chi| S_{y}|\chi\rangle=\frac{1}{2} \hbar\left(\alpha^{*} \beta^{*}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{\alpha}{\beta} \\
& =-\frac{i}{2} \hbar\left(\alpha^{*} \beta-\beta^{*} \alpha\right)
\end{aligned}
$$

$$
\left\langle S_{y}\right\rangle=\langle\chi| S_{y}|\chi\rangle=\frac{1}{2} \hbar\left(\begin{array}{ll}
\alpha^{*} & \beta^{*}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{\alpha}{\beta}
$$

$$
=\frac{1}{2} \hbar\left(|\alpha|^{2}-|\beta|^{2}\right)
$$

rotation about \mathbf{z}

rotation about x

$$
\sigma_{x}\left|\theta, \phi_{+}\right\rangle=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2} e^{i \phi}}=e^{i \phi}\binom{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2} e^{-i \phi}}
$$

$$
\begin{aligned}
& \theta \rightarrow \pi-\theta \\
& \phi \rightarrow-\phi
\end{aligned}
$$

rotation about x of π also called Pauli-X gate or NOT gate

rotate about y

$$
\begin{aligned}
& \sigma_{y}\left|\theta, \phi_{+}\right\rangle=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2} e^{i \phi}}=\binom{-i \sin \frac{\theta}{2} e^{e^{i}}}{i \cos \frac{\theta}{2}}=-i e^{i \phi}\binom{\sin \frac{\theta}{2}}{-\cos \frac{\theta}{2} e^{-i \phi}} \\
& \text { rotation about } y \text { of } \pi \\
& \text { also called Pauli-Y gate }
\end{aligned}
$$

Gate	Transformation on Bloch sphere (defined for single qubit)
X	π-rotation around the X axis, $\mathrm{Z} \rightarrow$ - Z . Also referred to as a bit-flip.
Z	π-rotation around the Z axis, $\mathrm{X} \rightarrow-\mathrm{X}$. Also referred to as a phase-flip.
H	maps $\mathrm{X} \rightarrow \mathrm{Z}$, and $\mathrm{Z} \rightarrow \mathrm{X}$. This gate is required to make superpositions.
S	$\text { maps } X \rightarrow Y \text {. }$ This gate extends H to make complex superpositions. ($\pi / 2$ rotation around Z axis).
S^{\dagger}	$\begin{aligned} & \text { inverse of } S \text {. } \\ & \text { maps } X \rightarrow-Y \text {. } \\ & (-\pi / 2 \text { rotation around } Z \text { axis }) . \end{aligned}$
T	$\pi / 4$ rotation around Z axis.
T^{\dagger}	$-\pi / 4$ rotation around Z axis.

Hadamard (H) gate

$$
\begin{aligned}
& H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
& \left|z_{-}\right\rangle=\binom{0}{1} \longleftrightarrow\left|x_{-}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{-1}
\end{aligned}
$$

- for other states, it acts as a rotation about z of π, followed by a rotation about y of $\pi / 2$

Phase gate

- Phase gates are defined $R_{\phi}=\left(\begin{array}{cc}1 & 0 \\ 0 & e^{i \phi}\end{array}\right)$
- when $\quad \phi=\pi \quad R_{\pi}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad$ is Pauli-Z gate
- when $\phi=\frac{\pi}{2} \quad R_{\pi / 2}=\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right)=\sqrt{Z}$
rotation about z of $\pi / 2 \quad$ (called S in IBM Q)
- when $\quad \phi=\frac{\pi}{4} \quad R_{\pi 2}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}\sqrt{2} & 0 \\ 0 & 1+i\end{array}\right)$
(called T in IBM Q)

Square root of NOT gate

$$
\begin{gathered}
\sqrt{X}=\frac{1}{2}\left(\begin{array}{cc}
1+i & 1-i \\
1-i & 1+i
\end{array}\right) \\
\frac{1}{4}\left(\begin{array}{cc}
1+i & 1-i \\
1-i & 1+i
\end{array}\right)\left(\begin{array}{cc}
1+i & 1-i \\
1-i & 1+i
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=X
\end{gathered}
$$

rotation about x of $\pi / 2$ also called $\sqrt{\text { NOT }}$

Spin dynamics

- Schrodinger equation $i \hbar \frac{d \psi}{d t}=H \psi=\frac{e g \hbar}{4 m_{e}} \sigma \cdot \mathbf{B} \psi$
- If B in z-direction $i \hbar \frac{d \psi}{d t}=\frac{e g \hbar}{4 m_{e}} \sigma_{\tau} \psi$
- the spinor state $\quad \psi(t)=\binom{\alpha_{+}(t)}{\alpha_{-}(t)}$
- for the energy eigenstate $\psi(t)=e^{-i o t}\binom{\alpha_{+}}{\alpha_{-}}$

eigenstate

- eigen equation $\quad \frac{e g}{4 m_{e}}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{\alpha_{+}}{\alpha_{-}}=\omega\binom{\alpha_{+}}{\alpha_{-}}$
- eigenstates $\omega= \pm \frac{e g}{4 m_{e}}= \pm \omega_{0} \quad \phi_{+}=\binom{1}{0}$

$$
\phi_{-}=\binom{0}{1}
$$

- general solution

$$
\psi(t)=a e^{-i \omega_{0} t} \phi_{+}+b e^{i \omega_{0} t} \phi_{-}=\binom{a e^{-i \omega_{0} t}}{b e^{i \omega_{0} t}}
$$

spin precession

$$
\left(\begin{array}{cc}
0 & e^{-i \phi} \\
e^{i \phi} & 0
\end{array}\right) \quad\left|u_{+}\right\rangle=\frac{1}{\sqrt{2}}\binom{e^{-i \frac{\phi}{2}}}{e^{\frac{\phi}{2}}}
$$

- Set initial state to be in x -direction

$$
\phi=0 \quad \psi(0)=\frac{1}{\sqrt{2}}\binom{1}{1}
$$

- for arbitrary time

$$
\psi(t)=\frac{1}{\sqrt{2}}\binom{e^{-i \omega_{0} t}}{e^{i \omega_{0} t}}
$$

- The expectation value

$$
\left\langle S_{x}\right\rangle=\frac{1}{2} \frac{\hbar}{2}\left(\begin{array}{ll}
e^{i \omega_{0} t} & e^{-i \omega_{0} t}
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{e^{-i \omega_{0} t}}{e^{i \omega_{0} t}}=\frac{\hbar}{4}\left(e^{2 i \omega_{0} t}+e^{-2 i \omega_{0} t}\right)=\frac{\hbar \cos 2 \omega_{0} t}{2}
$$

spin precession

- The spin precession frequency, called Larmor frequency

$$
\Omega=2 \omega_{0}=\frac{e g B}{2 m_{e}}=g \omega_{c}
$$

- For $B=I T, \omega_{c} \sim 0.9 \times 10^{11} \mathrm{rad} / \mathrm{s}$

Paramagnetic resonance

- The magnetic field has a small oscillating part

$$
\mathbf{B}=B_{0} \hat{z}+B_{1} \cos \omega t \hat{x}
$$

- solve the Schrodinger equation

$$
\begin{aligned}
i \hbar \frac{d}{d t} \psi & =\frac{e g \hbar}{4 m_{e}}\left(\begin{array}{cc}
B_{0} & B_{1} \cos \omega t \\
B_{1} \cos \omega t & -B_{0}
\end{array}\right) \psi \quad \psi=\binom{a(t)}{b(t)} \\
i \frac{d}{d t}\binom{a(t)}{b(t)} & =\frac{e g}{4 m_{e}}\left(\begin{array}{cc}
B_{0} & B_{1} \cos \omega t \\
B_{1} \cos \omega t & -B_{0}
\end{array}\right)\binom{a(t)}{b(t)}
\end{aligned}
$$

- When $B_{1}=0$

$$
\psi_{0}=\binom{a(0) e^{-i \omega_{0} t}}{b(0) e^{i \omega_{0} t}}
$$

Paramagnetic resonance

- When $\mathrm{B}_{\mathrm{I}}<>0$, the solution $\psi \approx \psi_{0}$
- Slowly varying functions A and B

$$
\begin{aligned}
& a(t) e^{i \omega_{0} t}=A(t) \\
& b(t) e^{-i \omega_{0} t}=B(t)
\end{aligned}
$$

- Consider how A and B evolve with time

$$
\begin{gathered}
i \frac{d A(t)}{d t}=i \frac{d a(t)}{d t} e^{i \omega_{0} t}-\omega_{0} a(t) e^{i \omega_{0} t}=\omega_{0} a(t) e^{i \omega_{0} t}+\omega_{1} b(t) \cos (\omega t) e^{i \omega_{0} t}-\omega_{0} A(t) \\
=\omega_{1} b(t) \cos (\omega t) e^{i \omega_{0} t}=\omega_{1} B(t) \cos (\omega t) e^{2 i \omega_{0} t}=\frac{1}{2} \omega_{1} B(t)\left(e^{2 i \omega_{0} t+i \omega t}+e^{2 i \omega_{0} t-i \omega t}\right) \\
i \frac{d B(t)}{d t}=\frac{1}{2} \omega_{1} A(t)\left(e^{-2 i \omega_{0} t+i \omega t}+e^{-2 i \omega_{0} t-i \omega t}\right) \quad \omega_{1}=\frac{e g B_{1}}{4 m_{e}}
\end{gathered}
$$

Rotating wave approximation

- When the driving frequency is close resonance that

$$
\omega \approx 2 \omega_{0}
$$

- There are rapid oscillating and slow oscillating terms
- The rotating wave approximation states that only slow oscillating term is important

$$
\left(e^{ \pm 2 i \omega_{0} t+i \omega t}+e^{ \pm 2 i \omega_{0} t-i \omega t}\right) \simeq e^{ \pm\left(2 i \omega_{0} t-i \omega t\right)}
$$

Rabi oscillation

- To solve the coupled equation

$$
\begin{aligned}
& i \frac{d A(t)}{d t} \approx \frac{1}{2} \omega_{1} B(t) e^{2 i \omega_{0} t-i o t} \quad i \frac{d B(t)}{d t} \approx \frac{1}{2} \omega_{1} A(t) e^{-2 i \omega_{0} t+i \omega t} \\
& \begin{aligned}
\frac{d^{2} A(t)}{d t^{2}} & \approx-\frac{i}{2} \omega_{1} e^{2 i \omega_{0}-t i o t} \frac{d B(t)}{d t}+\frac{1}{2} \omega_{1}\left(2 \omega_{0}-\omega\right) e^{2 i \omega_{0} t-i \omega t} B(t) \\
& =\left(\frac{\omega_{1}}{2}\right)^{2} A(t)+i\left(2 \omega_{0}-\omega\right) \frac{d A(t)}{d t}
\end{aligned}
\end{aligned}
$$

- The solution is Rabi frequency

$$
\begin{gathered}
A(t)=A(0) e^{i \Omega t} \quad-\Omega^{2}=\left(\frac{\omega_{1}}{2}\right)^{2}-\left(2 \omega_{0}-\omega\right) \Omega \\
\Omega=\left(\omega_{0}-\frac{\omega}{2}\right) \pm \sqrt{\left(\omega_{0}-\frac{\omega}{2}\right)^{2}+\left(\frac{\omega_{1}}{2}\right)^{2}}
\end{gathered}
$$

State evolution

- General solution $\quad A(t)=A_{+} e^{i \Omega_{2} t}+A_{-} e^{i \Omega, t}$

$$
\begin{aligned}
B(t) & =e^{-2 i \omega_{0}+t i o t} \frac{2 i}{\omega_{1}} \frac{d A(t)}{d t}=-\frac{2}{\omega_{1}} e^{-2 i \omega_{0} t+i \omega_{0}}\left(A_{+} \Omega_{+} e^{i \Omega_{4} t}+A_{-} \Omega_{-} e^{i \Omega_{-} t}\right) \\
& =-\frac{2}{\omega_{1}}\left(A_{+} \Omega_{+} e^{-i \Omega_{-} t}+A_{-} \Omega_{-} e^{-i \Omega_{+} t}\right)
\end{aligned}
$$

- Suppose $\mathrm{t}=0$

$$
\psi=\binom{a(0)}{b(0)}=\binom{1}{0}
$$

- The coefficients

$$
\begin{array}{ll}
A(0)=a(0)=1 & A_{+}+A_{-}=1 \\
B(0)=b(0)=0 & A_{+} \Omega_{+}+A_{-} \Omega_{-}=0
\end{array}
$$

$$
\begin{aligned}
& A_{+}=\frac{\Omega_{-}}{\Omega_{-}-\Omega_{+}} \\
& A_{-}=-\frac{\Omega_{+}}{\Omega_{-}-\Omega_{+}}
\end{aligned}
$$

state evolution

- The probability to find the spin pointing in -z direction is

$$
\begin{array}{ll}
P_{-}(t)=|b(t)|^{2}=|B(t)|^{2}=\left(\frac{2}{\omega_{1}}\right)^{2}\left|A_{+} \Omega_{+} e^{-i \Omega_{t} t}+A_{-} \Omega_{-} e^{-i \Omega_{+}+}\right|^{2} \\
=\left(\frac{2}{\omega_{1}}\right)^{2}\left(\frac{\Omega_{-} \Omega_{+}}{\Omega_{-}-\Omega_{+}}\right)^{2}\left|e^{-i \Omega_{-} t}-e^{-i \Omega_{+}+}\right|^{2} & \Omega_{+} \Omega_{-}=-\left(\frac{\omega_{1}}{2}\right)^{2} \\
=2\left(\frac{2}{\omega_{1}}\right)^{2}\left(\frac{\Omega_{-} \Omega_{+}}{\Omega_{-}-\Omega_{+}}\right)^{2}\left[1-\cos \left(\Omega_{-}-\Omega_{+}\right) t\right] & \Omega_{+}+\Omega_{-}=2 \omega_{0}-\omega \\
=\frac{1}{2} \frac{\omega_{1}^{2}}{\left(2 \omega_{0}-\omega\right)^{2}+\omega_{1}^{2}}\left[1-\cos \sqrt{\left(2 \omega_{0}-\omega\right)^{2}+\omega_{1}^{2}} t\right] & \Omega_{+}-\Omega_{-}=\sqrt{\left(2 \omega_{0}-\omega\right)^{2}+\omega_{1}^{2}}
\end{array}
$$

resonance condition

- when $\quad \omega=2 \omega_{0} \quad \Omega= \pm \frac{\omega_{1}}{2}$
- The down-spin probability

$$
P_{-}(t)=\frac{1}{2}\left(1-\cos \omega_{1} t\right)
$$

- For nuclear spin

$$
\omega_{1}=\frac{e g B_{1}}{4 m_{n}}
$$

Nuclear magnetic
 resonance

Particle	Spin	$W_{\text {Larmor }} / B$ $\mathrm{~s}^{-1} \mathrm{~T}^{-1}$	n / n
Electron	$1 / 2$	1.7608×10^{11}	$28.025 \mathrm{GHz} / \mathrm{T}$
Proton	$1 / 2$	2.6753×10^{8}	$42.5781 \mathrm{MHz} / \mathrm{T}$
Deuteron	1	0.4107×10^{8}	$6.5357 \mathrm{MHz} / \mathrm{T}$
Neutron	$1 / 2$	1.8326×10^{8}	$29.1667 \mathrm{MHz} / \mathrm{T}$
${ }^{23} \mathrm{Na}$	$3 / 2$	0.7076×10^{8}	$11.2618 \mathrm{MHz} / \mathrm{T}$
${ }^{31} \mathrm{P}$	$1 / 2$	1.0829×10^{8}	$17.2349 \mathrm{MHz} / \mathrm{T}$
${ }^{14} \mathrm{~N}$	1	0.1935×10^{8}	$3.08 \mathrm{MHz} / \mathrm{T}$
${ }^{13} \mathrm{C}$	$1 / 2$	0.6729×10^{8}	$10.71 \mathrm{MHz} / \mathrm{T}$
${ }^{19} \mathrm{~F}$	$1 / 2$	2.518×10^{8}	$40.08 \mathrm{MHz} / \mathrm{T}$

$900 \mathrm{MHz}, \mathrm{B}=21.1 \mathrm{~T}$

magnetic field in atoms

- electron spin may have interaction with internal magnetic field of an atom.
- at the moving frame, the nucleus may produce a magnetic field

$$
\begin{array}{ll}
d \vec{B}=\frac{\mu_{0} I}{4 \pi} \frac{d \vec{l} \times \vec{r}}{r^{3}} & I d \vec{l}=-\frac{Z e \vec{v}}{2 \pi r} d l \\
\vec{B}=\frac{\mu_{0} I}{4 \pi} \oint \frac{d \vec{l} \times \vec{r}}{r^{3}}=-\frac{Z e \mu_{0}}{4 \pi} \frac{\vec{v} \times \vec{r}}{r^{3}} &
\end{array}
$$

moving frame

field transformation

- The B field is related to the Coulomb electric field

$$
\vec{E}=\frac{Z e}{4 \pi \varepsilon_{0}} \frac{\vec{r}}{r^{3}} \quad \vec{B}=-\varepsilon_{0} \mu_{0} \vec{v} \times \vec{E}=-\frac{1}{c^{2}} \vec{v} \times \vec{E}
$$

- This is similar to the transformation in special relativity

$$
E_{\perp}^{\prime}=\gamma\left(E_{\perp}+\vec{v} \times \vec{B}\right) \quad B_{\perp}^{\prime}=\gamma\left(B_{\perp}-\frac{1}{c^{2}} \vec{v} \times \vec{E}\right) \quad \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

spin interaction

- The magnetic field produces an energy change to the electron

$$
\Delta E=-\vec{\mu}_{s} \cdot \vec{B}=\frac{g_{s} \mu_{b}}{\hbar} \vec{S} \cdot \vec{B}
$$

- The energy change transformation back to the rest frame would be reduced by half

$$
\Delta E=\frac{g_{s} \mu_{b}}{2 \hbar} \vec{S} \cdot \vec{B}
$$

spin-orbit interaction

- To combine the two equations and note that

$$
\begin{gathered}
\vec{E}=-\frac{\vec{F}}{e}=\frac{1}{e} \frac{d V}{d r} \frac{\vec{r}}{r} \\
\vec{B}=-\frac{1}{e c^{2} r} \frac{d V}{d r} \vec{v} \times \vec{r}=\frac{1}{e m c^{2} r} \frac{d V}{d r} \vec{L} \quad \vec{L}=m \vec{r} \times \vec{v} \\
\Delta E=\frac{1}{e m c^{2} r} \frac{d V}{d r} \frac{g_{s} \mu_{b}}{2 \hbar} \vec{S} \cdot \vec{L}=\frac{1}{2 m^{2} c^{2} r} \frac{d V}{d r} \vec{S} \cdot \vec{L}
\end{gathered}
$$

in solids

- In semiconductors, the crystal may has internal electric field E
- The E field produces a B field in the electron moving frame

$$
\vec{B}=-\frac{1}{c^{2}} \vec{\rightharpoonup} \times \vec{E}
$$

- The B field produces energy change

$$
\begin{array}{rlr}
\Delta E & =-\frac{e \hbar}{4 m} \vec{\sigma} \cdot(\vec{v} \times \vec{E}) & \vec{v}=\frac{\hbar \vec{k}}{m} \\
& =-\frac{e \hbar^{2}}{4 m^{2}} \vec{\sigma} \cdot(\vec{k} \times \vec{E}) &
\end{array}
$$

Rashba effect

- The Rashba effect states that

$$
\vec{E}=E_{0} \hat{z}
$$

$$
\Delta E=-\frac{e \hbar^{2} E_{0}}{4 m^{2}}(\vec{\sigma} \times \vec{k}) \cdot \hat{z}
$$

- The spin would precess when moving forward

Addition of two spins

- The 2 spin system
- electron I

$$
\left[S_{1 x}, S_{1 y}\right]=i \hbar S_{1 z}
$$

- electron 2

$$
\left[S_{2 x}, S_{2 y}\right]=i \hbar S_{2 z}
$$

$$
\left[S_{1 i}, S_{2 j}\right]=0 \quad \text { for all } i, j
$$

Total spin

- Total spin

$$
\mathbf{S}=\mathbf{S}_{1}+\mathbf{S}_{2}
$$

- commutation relation

$$
\begin{aligned}
{\left[S_{x}, S_{y}\right] } & =\left[S_{1 x}+S_{2 x}, S_{1 y}+S_{2 y}\right] \\
& =\left[S_{1 x}, S_{1 y}\right]+\left[S_{2 x}, S_{2 y}\right] \\
& =i \hbar S_{1 z}+i \hbar S_{2 z} \\
& =i \hbar S_{z}
\end{aligned}
$$

- Therefor it is easy to find total spin S satisfies the commutation relation of an angular momentum

Eigenvalues

- Consider the states using single spinors
- electron I $\chi_{ \pm}^{(1)}$

$$
\begin{aligned}
& S_{1}^{2} \chi_{ \pm}^{(1)}=\frac{1}{2}\left(\frac{1}{2}+1\right) \hbar^{2} \chi_{ \pm}^{(1)} \\
& S_{1 z} \chi_{ \pm}^{(1)}= \pm \frac{1}{2} \hbar \chi_{ \pm}^{(1)}
\end{aligned}
$$

- electron $2 \chi_{ \pm}^{(2)}$

$$
\begin{aligned}
& S_{2}^{2} \chi_{ \pm}^{(2)}=\frac{1}{2}\left(\frac{1}{2}+1\right) \hbar^{2} \chi_{ \pm}^{(2)} \\
& S_{2 z} \chi_{ \pm}^{(2)}= \pm \frac{1}{2} \hbar \chi_{ \pm}^{(2)}
\end{aligned}
$$

product states

- The possible states are (product states)

$$
\chi_{+}^{(1)} \chi_{+}^{(2)} \quad x_{+}^{(1)} \chi_{-}^{(2)} \quad x_{-}^{(1)} \chi_{+}^{(2)} \quad \chi_{-}^{(1)} \chi_{-}^{(2)}
$$

- calculate the eigenvalues

$$
\begin{aligned}
& s_{z} \chi_{+}^{(1)} \chi_{+}^{(2)}=\left(s_{12}+S_{2 z} \chi^{(1)} \chi_{+}^{(2)}\right. \\
&=\left(s_{12} \chi_{1(1)}^{(1)} \chi_{+}^{(2)}+\chi_{+}^{(1)}\left(s_{2 z} \chi_{+}^{(2)}\right)\right. \\
&=\hbar \chi_{+}^{(1)} \chi_{+}^{(2)} \\
&\left.s_{z} \chi_{+}^{(1)} \chi_{-}^{(2)}=s_{z} \chi_{-}^{(1)} \chi_{+}^{(2)}=0 \quad S_{z} \chi_{-}^{(1)} \chi_{-}^{(2)}=-\hbar \chi_{-}^{(1)} \chi_{-}^{(2)}\right)
\end{aligned}
$$

- Two $m=0$ states

spin triplet and singlet

- Spin triplet $S=I, m=I, 0,-I$
- Spin singlet $S=0, m=0$
- May check using lowering operator $S_{-}=S_{1-}+S_{2-}$

$$
\begin{aligned}
& S_{1} \chi_{+}^{(1)}=\hbar \chi_{-}^{(1)} \\
& S_{2} \chi_{+}^{(2)}=\hbar \chi_{-}^{(2)}
\end{aligned}
$$

$$
\begin{aligned}
S_{-} \chi_{+}^{(1)} \chi_{+}^{(2)} & =\left(S_{1-} \chi_{+}^{(1)}\right) \chi_{+}^{(2)}+\chi_{+}^{(1)}\left(S_{2-} \chi_{+}^{(2)}\right) \\
& =\hbar\left(\chi_{-}^{(1)} \chi_{+}^{(2)}+\chi_{+}^{(1)} \chi_{-}^{(2)}\right)
\end{aligned}
$$

- $\mathrm{S}=\mathrm{I}, \mathrm{m}=0$ state $\quad X_{+}=\frac{1}{\sqrt{2}}\left(\chi_{-}^{(1)} \chi_{+}^{(2)}+\chi_{+}^{(1)} \chi_{-}^{(2)}\right)$

spin triplet and singlet

- One may check the result again

$$
\begin{aligned}
S_{-} \frac{\chi_{-}^{(1)} \chi_{+}^{(2)}+\chi_{+}^{(1)} \chi_{-}^{(2)}}{\sqrt{2}} & =\left(S_{1-}+S_{2-}\right) \frac{\chi_{-}^{(1)} \chi_{+}^{(2)}+\chi_{+}^{(1)} \chi_{-}^{(2)}}{\sqrt{2}} \\
& =\frac{1}{\sqrt{2}}\left(S_{1-} \chi_{+}^{(1)}\right) \chi_{-}^{(2)}+\frac{1}{\sqrt{2}} \chi_{-}^{(1)}\left(S_{2-} \chi_{+}^{(2)}\right) \\
& =\sqrt{2} \hbar \chi_{-}^{(1)} \chi_{-}^{(2)}
\end{aligned}
$$

- The remaining state $\mathrm{m}=0$

$$
X_{-}=\frac{1}{\sqrt{2}}\left(\chi_{-}^{(1)} \chi_{+}^{(2)}-\chi_{+}^{(1)} \chi_{-}^{(2)}\right)
$$

S^{2}

- check the S^{2} value

$$
\begin{aligned}
\mathbf{S}^{2} & =\left(\mathbf{S}_{1}+\mathbf{S}_{2}\right)^{2}=\mathbf{S}_{1}^{2}+\mathbf{S}_{2}^{2}+2 \mathbf{S}_{1} \cdot \mathbf{S}_{2} \\
& =\mathbf{S}_{1}^{2}+\mathbf{S}_{2}^{2}+2 S_{1 x} S_{2 x}+2 S_{1 y} S_{2 y}+2 S_{1 z} S_{2 z} \\
& =\mathbf{S}_{1}^{2}+\mathbf{S}_{2}^{2}+S_{1+} S_{2-}+S_{1-} S_{2+}+2 S_{1 z} S_{2 z}
\end{aligned}
$$

$$
\begin{array}{ll}
\begin{aligned}
\mathbf{S}_{1}^{2} X_{+} & = \\
\frac{1}{\sqrt{2}} \mathbf{S}_{1}^{2}\left(\chi_{-}^{(1)} \chi_{+}^{(2)}+\chi_{+}^{(1)} \chi_{-}^{(2)}\right) \quad & =\mathbf{S}_{1}^{2}+\mathbf{S}_{2}^{2}+S_{1+} S_{2-}+S_{1-} S_{2+}+2 S_{1 z} \\
= & \frac{3}{4} \hbar^{2} \frac{1}{\sqrt{2}}\left(\chi_{-}^{(1)} \chi_{+}^{(2)}+\chi_{+}^{(1)} \chi_{-}^{(2)}\right)=\frac{3}{4} \hbar^{2} X_{+} \\
\mathbf{S}_{2}^{2} X_{+} & =\frac{3}{4} \hbar^{2} X_{+} \\
S_{1 z} S_{2 z} X_{+} & =\frac{1}{4} \hbar^{2} S_{1 z} S_{2 z}\left(\chi_{-}^{(1)} \chi_{+}^{(2)}+\chi_{+}^{(1)} \chi_{-}^{(2)}\right) \\
& \mathbf{S}_{2}^{2} X_{-}=\frac{3}{4} \hbar^{2} X_{-} \\
& =\frac{1}{\sqrt{2}} S_{1 z} \chi_{-}^{(1)} S_{2 z} \chi_{+}^{(2)}+\frac{1}{\sqrt{2}} S_{1 z} \chi_{+}^{(1)} S_{2 z} \chi_{-}^{(2)} \\
& =-\frac{1}{4} \hbar^{2} \frac{1}{\sqrt{2}}\left(\chi_{-}^{(1)} \chi_{+}^{(2)}+\chi_{+}^{(1)} \chi_{-}^{(2)}\right)=-\frac{1}{4} \hbar^{2} X_{+}
\end{aligned}
\end{array}
$$

S^{2}

$$
\begin{aligned}
\left(S_{1+} S_{2-}+S_{1-} S_{2+}\right) X_{+} & =\frac{1}{\sqrt{2}}\left(S_{1+} S_{2-}+S_{1-} S_{2+}\right)\left(\chi_{-}^{(1)} \chi_{+}^{(2)}+\chi_{+}^{(1)} \chi_{-}^{(2)}\right) \\
& =\frac{1}{\sqrt{2}}\left(S_{1+} \chi_{-}^{(1)}\right)\left(S_{2-} \chi_{+}^{(2)}\right)+\frac{1}{\sqrt{2}}\left(S_{1-} \chi_{+}^{(1)}\right)\left(S_{2+} \chi_{-}^{(2)}\right) \\
& =\frac{1}{\sqrt{2}} \hbar^{2}\left(\chi_{+}^{(1)} \chi_{-}^{(2)}+\chi_{-}^{(1)} \chi_{+}^{(2)}\right)=\hbar^{2} X_{+} \\
\left(S_{1+} S_{2-}+S_{1-} S_{2+}\right) X_{-} & =\frac{1}{\sqrt{2}}\left(S_{1+} S_{2-}+S_{1-} S_{2+}\right)\left(\chi_{-}^{(1)} \chi_{+}^{(2)}-\chi_{+}^{(1)} \chi_{-}^{(2)}\right) \\
& =\frac{1}{\sqrt{2}}\left(S_{1+} \chi_{-}^{(1)}\right)\left(S_{2-} \chi_{+}^{(2)}\right)-\frac{1}{\sqrt{2}}\left(S_{1-} \chi_{+}^{(1)}\right)\left(S_{2+} \chi_{-}^{(2)}\right) \\
& =-\frac{1}{\sqrt{2}} \hbar^{2}\left(\chi_{+}^{(1)} \chi_{-}^{(2)}-\chi_{-}^{(1)} \chi_{+}^{(2)}\right)=-\hbar^{2} X_{-}
\end{aligned}
$$

S^{2}

For $X_{+}, S=1$

$$
\begin{aligned}
\mathbf{S}^{2} X_{+} & =\mathbf{S}_{1}^{2} X_{+}+\mathbf{S}_{2}^{2} X_{+}+S_{1+} S_{2-} X_{+}+S_{1-} S_{2+} X_{+}+2 S_{1 z} S_{2 z} X_{+} \\
& =\frac{3}{4} \hbar^{2} X_{+}+\frac{3}{4} \hbar^{2} X_{+}+\hbar^{2} X_{+}-\frac{1}{2} \hbar^{2} X_{+} \\
& =2 \hbar^{2} X_{+}=S(S+1) \hbar^{2} X_{+}
\end{aligned}
$$

- For $\mathrm{X}_{-}, \mathrm{S}=0$

$$
\begin{aligned}
\mathbf{S}^{2} X_{-} & =\mathbf{S}_{1}^{2} X_{-}+\mathbf{S}_{2}^{2} X_{-}+S_{1+} S_{2-} X_{-}+S_{1-} S_{2+} X_{-}+2 S_{1 z} S_{2 z} X_{-} \\
& =\frac{3}{4} \hbar^{2} X_{-}+\frac{3}{4} \hbar^{2} X_{-}-\hbar^{2} X_{-}-\frac{1}{2} \hbar^{2} X_{-} \\
& =0
\end{aligned}
$$

representation

- product states
- total spin state

Spin triplet

spin-dependent potential

- In many physical systems, two particle interaction is spin-dependent
- the duetron hamiltonian

$$
\begin{aligned}
& H=\frac{p_{1}^{2}}{2 m_{1}}+\frac{p_{2}^{2}}{2 m_{2}}+V_{1}(r)+\frac{1}{\hbar^{2}} \mathbf{S}_{1} \cdot \mathbf{S}_{2} V_{2}(r) \\
& \mathbf{S}_{1} \cdot \mathbf{S}_{2}=\frac{1}{2}\left(\mathbf{S}^{2}-\mathbf{S}_{1}^{2}-\mathbf{S}_{2}^{2}\right)=\frac{1}{2} \mathbf{S}^{2}-\frac{3}{4} \hbar^{2}
\end{aligned}
$$

- S^{2} is a good quantum number, but S_{z} is not
- for triplet $V(r)=V_{1}(r)+\left(1-\frac{3}{4}\right) V_{2}(r)=V_{1}(r)+\frac{1}{4} V_{2}(r)$
- for singlet $\quad V(r)=V_{1}(r)+\left(0-\frac{3}{4}\right) V_{2}(r)=V_{1}(r)-\frac{3}{4} V_{2}(r)$

spin-dependent potential

- for deutron, one observes a bound $S=1$ state and an unbound $\mathrm{S}=0$ state
- for BCS paring, bound state $S=0$

http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/coop.html

spin singlet and entanglement

- In the spin singlet, quantum states are entangled
- First we do S_{x} measurement on electron I, we have 50% to get '+' and 50% to get ' - '
- then we do S_{x} measurement on electron 2 , the result is 100% opposite to the result of electron I.

How does it work?

- entangled state $\psi=\frac{1}{\sqrt{2}}\left(\binom{1}{0}_{1}\binom{0}{1}_{2}-\binom{0}{1}_{1}\binom{1}{0}_{2}\right)$
- the measurement of $\mathrm{S}_{\times 1}$ project the state to an eigenstate of S_{x}

$$
S_{x 1}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \left|S_{x}=+\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{1} \\
& P_{1}(+)=\left|S_{x}=+\right\rangle\left\langle S_{x}=+\right|
\end{aligned}
$$

- The project operator

$$
\begin{aligned}
& =\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 1
\end{array}\right) \frac{1}{\sqrt{2}}\binom{1}{1} \\
& =\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

measurement

- Projection result

$$
\begin{aligned}
P_{1}(+) \psi & =\frac{1}{\sqrt{2}} \frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{1}{0}_{1}\binom{0}{1}_{2}-\frac{1}{\sqrt{2}} \frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{0}{1}_{1}\binom{1}{0}_{2} \\
& =\frac{1}{2 \sqrt{2}}\binom{1}{1}_{1}\binom{0}{1}_{2}-\frac{1}{2 \sqrt{2}}\binom{1}{1}_{1}\binom{1}{0}_{2} \\
& =\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\binom{1}{1}_{1} \frac{1}{\sqrt{2}}\binom{-1}{1}_{2} \\
& =\psi^{\prime}
\end{aligned}
$$

- The following measurement on $\mathrm{S}_{\times 2}$ will only give `-' result

$$
S_{x 2} \psi^{\prime}=S_{x 2} P_{1}(+) \psi=-\frac{\hbar}{2} \psi^{\prime}
$$

- Einstein's comment:"spukhafte Fernwirkung" or "spooky action at a distance

Addition of L and S

- total angular momentum

$$
\mathbf{J}=\mathbf{L}+\mathbf{S}
$$

- product state $Y_{\text {lm }} \chi_{ \pm}$
- eigenstate $\mathbf{J}^{2} \psi_{j, m_{j}}=\hbar^{2} j(j+1) \psi_{j, m_{j}}$

$$
J_{z} \psi_{j, m_{j}}=\hbar m_{j} \psi_{j, m_{j}}
$$

- eigenvalue $j=l \pm \frac{1}{2}$

$$
m_{j}=-j,-j+1 \cdots, j-1, j
$$

Addition of L and S

- case I $j=l+\frac{1}{2} \quad m_{j}=m+\frac{1}{2}$

$$
\psi_{j, m_{j}}=\sqrt{\frac{l+m+1}{2 l+1}} Y_{l m} \chi_{+}+\sqrt{\frac{l-m}{2 l+1}} Y_{l m+1} \chi_{-}
$$

- case $2 \quad j=l-\frac{1}{2} \quad m_{j}=m+\frac{1}{2}$

$$
\psi_{j, m_{j}}=\sqrt{\frac{l-m}{2 l+1}} Y_{l m} \chi_{+}+\sqrt{\frac{l+m+1}{2 l+1}} Y_{l m+1} \chi_{-}
$$

Addition of angular momenta

$$
\mathbf{J}=\mathbf{L}_{1}+\mathbf{L}_{2}
$$

- possible total angular momentum

$$
j=l_{1}+l_{2}, l_{1}+l_{2}-1, \cdots\left|l_{1}-l_{2}\right|
$$

- possible z-component

$$
m_{j}=-j,-j+1 \cdots, j-1, j
$$

Fine structure

- Consider the total angular momentum

$$
\begin{gathered}
\vec{J}=\vec{L}+\vec{S} \quad J^{2}=(\vec{L}+\vec{S})^{2}=L^{2}+S^{2}+2 \vec{L} \cdot \vec{S} \\
\vec{L} \cdot \vec{S}=\frac{1}{2}\left(J^{2}-L^{2}-S^{2}\right)
\end{gathered}
$$

- For angular momentum eigenstates, we have

$$
\vec{L} \cdot \vec{S}=\frac{\hbar^{2}}{2}[j(j+1)-l(l+1)-s(s+1)]
$$

- The spin-orbital energy is

\[

\]

- The electron energy is on the order of

$$
\begin{aligned}
E_{0} & \sim-\frac{e^{2}}{8 \pi \varepsilon_{0}}\left\langle\frac{1}{r}\right\rangle=-\frac{e^{2}}{8 \pi \varepsilon_{0}} \frac{1}{a_{0}} \\
& =\frac{e^{2}}{8 \pi \varepsilon_{0}}\left(\frac{m e^{2}}{4 \pi \varepsilon_{0} \hbar^{2}}\right)=\frac{m}{2 \hbar^{2}}\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{2}
\end{aligned}
$$

- The spin-orbit energy is on the order of

$$
\begin{aligned}
\Delta E & \sim \frac{\hbar^{2}}{4 m^{2} c^{2}} \frac{e^{2}}{4 \pi \varepsilon_{0}}\left\langle\frac{1}{r^{3}}\right\rangle=\frac{\hbar^{2}}{4 m^{2} c^{2}} \frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{a_{0}^{3}} \\
& =\frac{\hbar^{2}}{4 m^{2} c^{2}} \frac{e^{2}}{4 \pi \varepsilon_{0}}\left(\frac{m e^{2}}{4 \pi \varepsilon_{0} \hbar^{2}}\right)^{3}=\frac{m}{4 c^{2} \hbar^{4}}\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{4} \\
& =E_{0} \frac{1}{2}\left(\frac{e^{2}}{4 \pi \varepsilon_{0} \hbar c}\right)^{2}=\frac{1}{2} E_{0} \alpha^{2} \\
\alpha=\frac{e^{2}}{4 \pi \varepsilon_{0} \hbar c} & \sim \frac{1}{137} \quad \text { called fine structure constant }
\end{aligned}
$$

