深入淺出機器學習

Head-in machine learning

Agenda

- What is machine learning
- 機器學習三兄弟
- Types of learning algorithms

Machine learning = let machine learn

Machine learning

Find an appropriate decision function

f: feature space \rightarrow decision space

to predict future outcomes

• Mathematically, we solve the following problem

$$\min_{f(\mathbf{x})} E\left[L\left(y, f(\mathbf{x})\right)\right]$$
(1)

Machine learning三兄弟

- Loss function $L(y, f(\mathbf{x}))$ measures the accuracy of a prediction
- Representation of the decision function $f(\mathbf{x})$
- Model complexity (regularization)

Loss function

- Numerical y: $L(y, f(\mathbf{x})) = (y f(\mathbf{x}))^2$
- Categorical y: $L(y, f(\mathbf{x})) = I\{y \neq f(\mathbf{x})\}$
- Vector \mathbf{y} : $L(\mathbf{y}, f(\mathbf{x})) = \|\mathbf{y} f(\mathbf{x})\|^2$
- Structural learning

Empirical risk

• When the data $\{\mathbf{x}_i, y_i\}_{i=1}^n$ are randomly sampled, equation (1) can be approximated by its empirical version

$$\min_{f(\mathbf{x})} \frac{1}{n} \sum_{i=1}^{n} \left[L\left(y_i, f(\mathbf{x}_i)\right) \right]$$
(2)

• If $L(y, f(\mathbf{x})) = -\ell(y|f(\mathbf{x}))$, equation (2) is equivalent to MLE

Representations

- Deep learning
- Kernel trick
- Gaussian processes
- Splines
- Wavelets
- Finite element methods

Overfitting

Structure risk (regularization)

 Control the model complexity by introducing an additional regularization term:

$$\min_{f(\mathbf{x})} \frac{1}{n} \sum_{i=1}^{n} \left[L\left(y_i, f(\mathbf{x}_i)\right) \right] + \lambda \|f\|$$
(3)

- The tuning parameter λ needs to be chosen carefully (e.g. by cross-validation)
- $\|f\|$ can also be interpreted as the prior of f

Cross validation

Types of learning algorithms

- Supervised learning: when y_i 's are known
- Semisupervised learning: when part of y_i's are known
- Unsupervised learning: when y_i 's are unknown
- Autoencoder and GAN: $y_i = \mathbf{x}_i$
- Reinforcement learning

Homework: cross-validation

Find an appropriate tuning parameter C in homework 3 by:

- 5-fold CV
- 10-fold CV
- Shuffle split

Reference: sklearn.model_selection