Probability (1)

Random trial

- A random trial is a situation in which we know what outcomes could happen, but we don't know which particular outcome will happen.
- Examples: coin tosses, die rolls, iTunes shuffle, etc.
- It can be helpful to model a process as random even if it is not truly random.

Sample space

- Sample space is the collection of all possible outcomes of a trial.
- A couple has one kid, what is the sample space for the gender of this kid? $S=\{M, F\}$
- A couple has two kids, what is the sample space for the gender of these kids? $S=\{M M, F F, M F, F M\}$

Event

- An event is a subset of the sample space S
- $A=\{M F, F M\}$ is an event of $S=\{M M, F F, M F, F M\}$

Probability

- Frequentist interpretation:
- The probability of an outcome is the proportion of times the outcome would occur if we observed the random process an infinite number of times.
- Mathematical interpretation:
- $\quad P(A)=$ probability of event A
- $0 \leq P(A) \leq 1$
- $P(S)=1$

Disjoint

- Disjoint (mutually exclusive) outcomes: Cannot happen at the same time.
- The outcome of a single coin toss cannot be a head and a tail.
- A student both cannot fail and pass a class.
- A single card drawn from a deck cannot be an ace and a queen.
- Non-disjoint outcomes: Can happen at the same time.

Union of non-disjoint events

What is the probability of drawing a jack or a red card from a well shuffled full deck?

$P($ jack or red $)=P($ jack $)+P($ red $)-P($ jack and red $)$

$$
=\frac{4}{52}+\frac{26}{52}-\frac{2}{52}=\frac{28}{52}
$$

Addition rule

- General addition rule: Let A and B be two events,

$$
P(A \text { or } B)=P(A)+P(B)-P(A \cap B)
$$

Probability distribution

- A probability distribution lists all possible events and the probabilities with which they occur.

1. The events listed must be disjoint
2. Each probability must be between 0 and 1
3. The probabilities must total 1

- The probability distribution for the genders of two kids:

Event	$M M$	$F F$	$M F$	$F M$
Probability	0.25	0.25	0.25	0.25

Probability of two events

Researchers randomly assigned 72 chronic users of cocaine into three groups: desipramine (antidepressant), lithium (standard treatment for cocaine) and placebo. Results of the study are summarized below:

	no relapse		
relapse	total		
desipramine	10	14	24
lithium	18	6	24
placebo	20	4	24
total	48	24	72

Joint probability

What is the probability that a patient received the antidepressant (desipramine) and relapsed?

	no relapse		
relapse	total		
desipramine	10	14	24
lithium	18	6	24
placebo	20	4	24
total	48	24	72

$P($ relapsed and desipramine $)=10 / 72$

Marginal probability

What is the probability that a patient relapsed?

	no relapse		
relapse	total		
desipramine	10	14	24
lithium	18	6	24
placebo	20	4	24
total	48	24	72

$\mathrm{P}($ relapsed $)=48 / 72$

Conditional probability

If we know that a patient relapsed, what is the probability that they received the antidepressant (desipramine)?

	no relapse		
relapse	total		
desipramine	10	14	24
lithium	18	6	24
placebo	20	4	24
total	48	24	72

$P($ desipramine \mid relapsed $)=10 / 48$

Conditional probability

- The conditional probability of the outcome of interest A given condition B is calculated as

$$
P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}=\frac{P(A \cap B)}{P(B)}
$$

Conditional probability

	no relapse		
total			
desipramine	10	14	24
lithium	18	6	24
placebo	20	4	24
total	48	24	72

$P($ desipramine \mid relapse $)=\frac{P(\text { desipramine } \cap \text { relapse })}{P(\text { relapse })}$

$$
=\frac{10 / 72}{48 / 72}=\frac{10}{48}
$$

Conditional probability

	no relapse relapse		
total			
desipramine	10	14	24
lithium	18	6	24
placebo	20	4	24
total	48	24	72

$P($ relapse \mid desipramine $)=\frac{P(\text { relapse } \cap \text { desipramine })}{P(\text { desipramine })}$

$$
=\frac{10 / 72}{24 / 72}=\frac{10}{24}
$$

Multiplication rule

- If A and B represent two outcomes or events, then

$$
P(A \text { and } B)=P(A \mid B) \times P(B)
$$

- Note that this formula is simply the conditional probability formula, rearranged.

Independence

- Two trials are independent if knowing the outcome of one provides no useful information about the outcome of the other.
- Knowing that the first card drawn from a deck is an ace may (if without replacement) provide useful information for determining the probability of drawing an ace in the second draw.

Dependence

- Knowing that the first card drawn from a deck is an ace may (if without replacement) provide useful information for determining the probability of drawing an ace in the second draw.
- Outcomes of two draws from a deck of cards (without replacement) are dependent.

Mathematical definition

- A and B are independent iff

$$
P(A \mid B)=P(A), \quad P(B \mid A)=P(B)
$$

- Or equivalently,

$$
P(A \cap B)=P(A) \times P(B)
$$

Independent and identically distributed

- A sequence of random trials is independent and identically distributed (i.i.d.) if each trial has the same probability distribution as the others and all are mutually independent.
- Drawing by sampling with replaces is i.i.d.
- Preferred by most of the statistical and machine learning methods due to its simplicity.

Homework（簡單隨機抽樣）

1．考慮我們從 N 個母體中按照取出不放回（sampling without replacement）的方式隨機抽出 n 個樣本（假設母體中每件東西被抽中的機會均等）。試論證：
（a）此n個樣本並非i．i．d．樣本
（b）當 $n / N \rightarrow 0$ 時，此 n 個樣本的行為會接近i．i．d．

Homework（分層抽樣）

2．考慮母體可被分為m個互斥的群體，每個群體各自有 N_{i} 個成員，其中 $N_{1}+N_{2}+\cdots+N_{m}=N$ 。若我們從每個群體按照 N_{i} 的比例各自以取出放回的方式抽出 n_{i}個樣本，其中 $\sum_{i=1}^{m} n_{i}=n$ 及 $\frac{n_{i}}{n} \approx \frac{N_{i}}{N}$ 。試論證以此方式抽出的 n 個樣本是否為i．i．d．樣本。

Bayes rule

- Bayes' theorem is an important tool in data science:

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \cap B)}{P(B)} \\
& =\frac{P(B \mid A) P(A)}{P(B)}
\end{aligned}
$$

Cancer screening

- When a patient goes through breast cancer screening there are two competing claims: patient had cancer and patient doesn't have cancer. If a mammogram yields a positive result, what is the probability that patient actually has cancer?

Cancer screening

Cancer status

Test result

