Rotation group

Spatial Translations

- the unitary operator for a spatial translation a is

$$
T(a)=e^{-i P \cdot a / \hbar}
$$

- where a is a numerical 3 -vector, and P is the total momentum operator for the system in question

$$
\left[P_{i}, P_{j}\right]=0
$$

- Let x_{n} be the coordinate operator of particle n.

$$
T^{\dagger}(a) x_{n} T(a)=x_{n}+a
$$

- If $\mid \varphi>$ is any state, then

$$
T|\varphi\rangle=|\varphi ; a\rangle
$$

Wave functions

- Understand how the wave functions change by T. Consider ID for example

$$
\varphi(x)=\langle x \mid \varphi\rangle \quad \varphi^{\prime}(x)=\langle x \mid \varphi ; a\rangle=\langle x| T|\varphi\rangle
$$

- Evaluate how the position eigenstates change by T

$$
\begin{gathered}
T|x\rangle=|x ; a\rangle \\
x|x ; a\rangle=x T|x\rangle=T x|x\rangle+[x, T]|x\rangle=(x+a) T|x\rangle=i \frac{\partial T(a)}{\partial p}=a T(a) \\
|x ; a\rangle=|x+a\rangle|x ; a\rangle
\end{gathered}
$$

we have

$$
\varphi^{\prime}(x)=\left\langle T^{\dagger} x \mid \varphi\right\rangle=\langle x-a \mid \varphi\rangle=\varphi(x-a)
$$

Groups of translation op

- Take the translation through a followed by b:

$$
T(b) T(a)=T(a+b)
$$

- the order in these translations does not matter; they commute.
- The special case $b=-a$,

$$
T(a) T(-a)=T(a) T^{\dagger}(a)=1
$$

- the operators $T(a)$ form an Abelian Lie group of unitary operators standing in one-to-one correspondence with the group of translation in the Euclidean 3 -space E_{3}.
- A group (G) is a finite or infinite set of elements (g_{l}, g_{2}, \ldots) having a composition law for every pair of elements such that gIg_{2} is again an element of (G); which is associative, i.e., $\left(g g_{2}\right) g_{3}=g_{1}\left(g_{2} g_{3}\right)$; and with every element g_{i} having an inverse $g_{i}{ }^{-1}$ such that $g_{i} g_{i}^{-1}$ is the identity element l, i.e., $I g_{i}=g_{i} I=g_{i}$ for all i.
- A group is Abelian if all its elements commute, i.e., $g_{1} g_{2}=g_{2} g_{1}$
- A group with an infinite set of elements is a Lie group if its elements can be uniquely specified by a set of continuous parameters ($z_{l} \ldots z_{r}$)

infinitesimal transformation

- the generalization of the infinitesimal translation

$$
T(\delta a)=1-\frac{i}{\hbar} \delta a \cdot P
$$

- if a unitary operator $U\left(z_{1} \ldots z_{r}\right)$ carries out a transformation belonging to a Lie group, then if the transformation is infinitesimal it has the form

$$
U=1-i \sum_{l} \delta z_{l} \cdot \mathscr{G}_{l}
$$

Generators

- the operators \mathscr{G}_{l}, which must be Hermitian for U to be unitary, are called the generators of the group (G).
- let $f\left(x_{1}, x_{2}, x_{3}\right)$ be any function of the coordinates in E_{3}, taken now to be real numbers and not operators, and consider the infinitesimal translation $\quad x_{i} \rightarrow x_{i}+\delta a_{i}$

$$
\begin{gathered}
\delta f=f\left(x_{i}+\delta a_{i}\right)-f\left(x_{i}\right)=\sum_{i} \delta a_{i} \frac{\partial f}{\partial x_{i}} \\
\delta f=\frac{i}{\hbar} \sum_{i} \delta a_{i} \frac{\hbar}{i} \frac{\partial f}{\partial x_{i}}
\end{gathered}
$$

Rotations

- Parametrization: specify a rotation R by the unit vector n along an axis of rotation, and an angle of rotation (θ) about that axis
- infinitesimal rotation will be parametrized by $n \delta \theta$
- Under this rotation, a vector K in E_{3} transforms as follows:

$$
\begin{gathered}
K \rightarrow K+\delta K=K+\delta \theta(n \times K) \\
\delta K=\delta \theta \epsilon_{i j k} n_{j} K_{k}
\end{gathered}
$$

$\varepsilon_{i j k}$ antisymmetric Levi-Civita tensor

Rotation group

- a unitary transformation $D(R)$ on the Hilbert space S) of the system of interest.

$$
|\psi\rangle \longrightarrow\left|\psi^{\prime}\right\rangle=D(R)|\psi\rangle
$$

- For infinitesimal rotations

$$
\begin{gathered}
D^{\dagger}(R) r D(R)=r+\delta r=r+\delta \theta(n \times r) \\
\psi^{\prime}(r)=\left\langle r \mid \psi^{\prime}\right\rangle=\left\langle D^{\dagger}(R) r \mid \psi\right\rangle=\psi(r-\delta r)
\end{gathered}
$$

Generator for rotation

- Consider an infinitesimal rotation about n $=(0,0,1)$, the change in ψ is

$$
\begin{gathered}
\delta \psi(r)=\psi(r-\delta r)-\psi(r) \\
\delta r=\delta \theta \hat{z} \times r=(y,-x, 0) \delta \theta \\
\delta \psi(r)=\delta \theta\left(y \frac{\partial \psi}{\partial x}-x \frac{\partial \psi}{\partial y}\right)=\frac{i}{\hbar} \delta \theta\left(x p_{y}-y p_{x}\right) \psi \\
=\frac{i}{\hbar} \delta \theta L_{z} \psi
\end{gathered}
$$

- The rotation generator is angular momentum

Angular momentum

- The general rotation can be expressed as

$$
D(R)=\exp \left(-\frac{i}{\hbar} \theta n \cdot J\right)
$$

- n. J is the component of angular momentum along the direction n.

non-Abelian group

- Successive rotations of K about distinct axes do not commute, a fact that is captured in the commutation rule

$$
\left[J_{i}, J_{j}\right]=i \epsilon_{i j k} J_{k}
$$

- The rotation group is non-Abelian

$$
D\left(R_{2}\right) D\left(R_{1}\right) \neq D\left(R_{1}\right) D\left(R_{2}\right)
$$

Dimensionless angular momentum

- Consider a single particle with position and momentum operators x and p. The (dimensionless) orbital angular momentum operator L for this particle is then defined as

$$
L=\frac{1}{\hbar}(x \times p) \quad L_{i}=\frac{1}{\hbar} \epsilon_{i j k} x_{j} p_{k}
$$

- the order of x_{j} and p_{k} does not matter because only commuting factors appear

$$
\left[x_{j}, p_{k}\right]=i \hbar \delta_{j k}
$$

- The commutation rule for the orbital angular momentum

$$
\begin{aligned}
& {\left[L_{i}, L_{j}\right]=\frac{1}{\hbar^{2}}\left[\epsilon_{i k l} x_{k} p_{l}, \epsilon_{j m n} x_{m} p_{n}\right]=\frac{\epsilon_{i k l} \epsilon_{j m n}}{\hbar^{2}}\left[x_{k} p_{l}, x_{m} p_{n}\right]} \\
& {\left[x_{k} p_{l}, x_{m} p_{n}\right]=\left[x_{k}, x_{m} p_{n}\right] p_{l}+x_{k}\left[p_{l}, x_{m} p_{n}\right]} \\
& =x_{m}\left[x_{k}, p_{n}\right] p_{l}+x_{k}\left[p_{l}, x_{m}\right] p_{n} \\
& =i \hbar\left(\delta_{k n} x_{m} p_{l}-\delta_{l m} x_{k} p_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
{\left[L_{i}, L_{j}\right] } & =\frac{i}{\hbar}\left(\epsilon_{i k l} \epsilon_{j m k} x_{m} p_{l}-\epsilon_{i k l} \epsilon_{j l n} x_{k} p_{n}\right) \\
& =\frac{i}{\hbar}\left(\epsilon_{k l i} \epsilon_{k j m} x_{m} p_{l}-\epsilon_{l i k} \epsilon_{l n j} x_{k} p_{n}\right) \\
& =\frac{i}{\hbar}\left[\left(\delta_{j l} \delta_{i m}-\delta_{i j} \delta_{l m}\right) x_{m} p_{l}-\left(\delta_{i n} \delta_{j k}-\delta_{i j} \delta_{k n}\right) x_{k} p_{n}\right] \\
& =\frac{i}{\hbar}\left[\left(x_{i} p_{j}-x_{j} p_{i}\right)-\delta_{i j}\left(x_{l} p_{l}-x_{k} p_{k}\right)\right] \\
& =\frac{i}{\hbar}\left(x_{i} p_{j}-x_{j} p_{i}\right) \\
& =i \epsilon_{i j k} L_{k}
\end{aligned}
$$

Here we used the identity

$$
\epsilon_{i k l} \epsilon_{i n n}=\delta_{k m} \delta_{l n}-\delta_{k n} \delta_{l m}
$$

