Quantum mechanics problem set 4

December 28, 2020

1. Consider the spin state

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle),$$

in which the eigenstates can be written as

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \qquad |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$

- (a) Write the corresponding density matrix for a pure state $\rho_{\varphi}=|\psi\rangle\langle\psi|$
- (b) Calculate $tr(\rho_{\varphi})$ and $tr(\rho_{\varphi}^2)$.

2. Another density matrix describes a mixture

$$\rho_2 = \left(\begin{array}{cc} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{array}\right)$$

- (a) Calculate $\langle \sigma_x \rangle$, $\langle \sigma_y \rangle$ and $\langle \sigma_z \rangle$ for ρ_ψ and ρ_2 . Here $\sigma_{x,y,z}$ are Pauli
- (b) Could we distinguish the difference of a pure state and a mixture by measurement?

3. Proof the identities:

(a)
$$[p^n, q] = -in\hbar p^{n-1}$$

$$\begin{array}{l} \text{(a) } [p^n,q] = -in\hbar p^{n-1} \\ \text{(b) } \left[e^{\frac{iap}{\hbar}},q\right] = ae^{\frac{iap}{\hbar}} \end{array}$$

4. Proof the identities:
(a)
$$\langle q'|p^n|\psi\rangle = (\frac{\hbar}{i})^n \frac{d^n}{dq'^n} \langle q'|\psi\rangle = (\frac{\hbar}{i})^n \frac{d^n}{dq'^n} \psi(q')$$

(b)
$$\langle q'|e^{\frac{iap}{\hbar}}|\psi\rangle = \psi(q'+a)$$

- 5. Show that for any hermitian operator A, the eigenvalues are not changed under the unitary transform $U^{\dagger}AU$.
- 6. Consider the spin hamiltonian $H = -\hbar\omega_0\sigma_z$, and try to write down the analytical form of time evolution operator U(t).
 - (a) If the spin is initially kept at state $|\psi, t=0\rangle = |x+\rangle$, calculate the state $|\psi,t\rangle$ at any time t. Describe how the spin changes in time.
 - (b) Calculate x measurement result $\langle \sigma_x \rangle$ as a function of time.

- 7. Use a program (e.g. python) to calculate the spin evolution for any hamiltonian and any initial state. Verify your answer with the previous problem.
- 8. Following the above question, calculate how the spin operators σ_x and σ_z change in time in the Heisenberg picture.