Quantum mechanics problem set 2

October 26, 2020

1. Suppose the dimension of a Hilbert space is d, and also U is a $d \times d$ matrix obeying $U^{\dagger} U=1$. With an orthonormal basis $|k\rangle$ in the Hilbert space, show that the set $U|k\rangle$ is also an orthonormal basis. Use this fact to prove that $U U^{\dagger}=1$, so that U must be unitary.
2. There is an orthonormal basis set $\{|n\rangle\}=|1\rangle,|2\rangle,|3\rangle, \cdots$ for an infinite dimensional Hilbert space. (a) An operator U is defined by

$$
U=\sum_{n=1}^{\infty}|n+1\rangle\langle n|
$$

Show that $U^{\dagger} U=1$, but $U U^{\dagger} \neq 1$. Thus U is not unitary. (b) Could you fix this problem to suggest a unitary operator in a finite dimensional Hilbert space?
3. Consider a 3 -dimensional ket space. By using an orthonormal set $|1\rangle,|2\rangle$ and $|3\rangle$, the operators A and B are represented as

$$
A=\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & -a & 0 \\
0 & 0 & -a
\end{array}\right) \quad B=\left(\begin{array}{ccc}
b & 0 & 0 \\
0 & 0 & -i b \\
0 & i b & 0
\end{array}\right)
$$

Here a and b are real numbers.
(a) What are the eigenvalues of A and B ?
(b) Show that A and B are commute.
(c) Find the new orthonormal kets that are simultaneous eigenkets of A and B. Specify the eigenvalues of A and B for each of the 3 eigenkets. Does your specification of eigenvalues completely characterize each eigenket?
4. For an input state

$$
|\phi\rangle=\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)
$$

What are the joint probabilities for the all possible outcome of simultaneous measurement A and B, which are defined in previous problem?
5. If H is an hermitian operator, show that (a) $U_{1}=e^{i H}$ (b)

$$
U_{2}=\frac{1+i H}{1-i H}
$$

are unitary operators.
(c) Let

$$
H=\left(\begin{array}{cc}
0 & -i b \\
i b & 0
\end{array}\right)
$$

calculate U_{1} and U_{2} explicitly.
6. Prove that the eigenvectors associated to different eigenvalues of an operator are orthogonal.

