Quantum mechanics problem set 3

December 24, 2019

1. The hamiltonian of a spin in magnetic field \vec{B} is $H = -\gamma \vec{S} \cdot \vec{B}$. γ is gyromagnic ratio, and vector \vec{S} is the angular momentum operator, $\vec{S} = \frac{\hbar}{2} (\sigma_x, \sigma_y, \sigma_z)$, expressed by Pauli matrices, σ_i . For example, if a magnetic field is pointing to x-direction, the hamiltonian reads $H = -\frac{\gamma \hbar B}{2} \sigma_x$.

Now a magnetic field points to a direction which can be described by the polar angle θ and azimuthal angle ϕ . Namely,

$$H = -\frac{\gamma \hbar B}{2} \left(\cos \theta \sigma_z + \sin \theta \cos \phi \sigma_x + \sin \theta \sin \phi \sigma_y \right)$$

Find the energy eigenvalues and corresponding eigenkets using $|+z\rangle$ and $|-z\rangle$

- 2. (a) Calculate the commutation relations of the Pauli matrices: $[\sigma_x, \sigma_y] =?$, $[\sigma_y, \sigma_z] =?$, and $[\sigma_z, \sigma_x] =?$ (b) Calculate the anti commutation relations: $\{\sigma_x, \sigma_x\} =?$, $\{\sigma_x, \sigma_y\} =?$, and $\{\sigma_x, \sigma_z\} =?$
- 3. (a) Find out the 2 × 2 matrices of √σx, √σy, and √σz.
 (b) Show that the three matrices respectively represent the π/2 rotation about x, y and z axis for a quantum state in the Bloch sphere.
- 4. The spin-up and spin-down states are expressed by $|0\rangle$ and $|1\rangle$. One of the Bell states for two spins is written as

$$|\Psi_{-}\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle_{1}|1\rangle_{2} - |1\rangle_{1}|0\rangle_{2}\right).$$

Starting with the state $|0\rangle_1|0\rangle_2$, how can one get this Bell state? (Hint: you may use single qubit gates and controlled-NOT gate)

5. Following the previous problem, if the spins are distributed to Alice and Bob. After Alice performs the measurement of S_z and gets the value of $\hbar/2$,

(a) how much probability for Bob observing $\hbar/2$ if he does the same measurement S_z ?

(b) how much probability for Bob observing $\hbar/2$ if he does the measurement S_x ?

(c) how much probability for Bob observing $\hbar/2$ if he does the measurement $(S_x + S_z)/\sqrt{2}$?